You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							83 lines
						
					
					
						
							2.0 KiB
						
					
					
				
			
		
		
	
	
							83 lines
						
					
					
						
							2.0 KiB
						
					
					
				import numpy as np
 | 
						|
import matplotlib.pyplot as plt
 | 
						|
from mpl_toolkits.mplot3d import Axes3D
 | 
						|
from matplotlib import cm
 | 
						|
from matplotlib.ticker import LinearLocator, FormatStrFormatter
 | 
						|
from scipy.optimize import minimize
 | 
						|
 | 
						|
a = -9.81
 | 
						|
dt = 0.1
 | 
						|
 | 
						|
r = 2.0
 | 
						|
 | 
						|
v_ls = []
 | 
						|
x_ls = []
 | 
						|
v_egos = []
 | 
						|
 | 
						|
for vv_ego in np.arange(35, 40, 1):
 | 
						|
    for vv_l in np.arange(35, 40, 1):
 | 
						|
        for xx_l in np.arange(0, 100, 1.0):
 | 
						|
            x_l = xx_l
 | 
						|
            v_l = vv_l
 | 
						|
            v_ego = vv_ego
 | 
						|
            x_ego = 0.0
 | 
						|
 | 
						|
            ttc = None
 | 
						|
            for t in np.arange(0, 100, dt):
 | 
						|
                x_l += v_l * dt
 | 
						|
                v_l += a * dt
 | 
						|
                v_l = max(v_l, 0.0)
 | 
						|
 | 
						|
                x_ego += v_ego * dt
 | 
						|
                if t > r:
 | 
						|
                    v_ego += a * dt
 | 
						|
                    v_ego = max(v_ego, 0.0)
 | 
						|
 | 
						|
                if x_ego >= x_l:
 | 
						|
                    ttc = t
 | 
						|
                    break
 | 
						|
 | 
						|
            if ttc is None:
 | 
						|
                if xx_l < 0.1:
 | 
						|
                    break
 | 
						|
 | 
						|
                v_ls.append(vv_l)
 | 
						|
                x_ls.append(xx_l)
 | 
						|
                v_egos.append(vv_ego)
 | 
						|
                break
 | 
						|
 | 
						|
 | 
						|
def eval_f(x, v_ego, v_l):
 | 
						|
    est = x[0] * v_l + x[1] * v_l**2 \
 | 
						|
            + x[2] * v_ego + x[3] * v_ego**2
 | 
						|
    return est
 | 
						|
 | 
						|
def f(x):
 | 
						|
    r = 0.0
 | 
						|
    for v_ego, v_l, x_l in zip(v_egos, v_ls, x_ls):
 | 
						|
        est = eval_f(x, v_ego, v_l)
 | 
						|
        r += (x_l - est)**2
 | 
						|
 | 
						|
    return r
 | 
						|
 | 
						|
x0 = [0.5, 0.5, 0.5, 0.5]
 | 
						|
res = minimize(f, x0, method='Nelder-Mead')
 | 
						|
print(res)
 | 
						|
print(res.x)
 | 
						|
 | 
						|
g = 9.81
 | 
						|
t_r = 1.8
 | 
						|
 | 
						|
estimated = [4.0 + eval_f(res.x, v_ego, v_l) for (v_ego, v_l) in zip(v_egos, v_ls)]
 | 
						|
new_formula = [4.0 + v_ego * t_r - (v_l - v_ego) * t_r + v_ego**2/(2*g) - v_l**2 / (2*g)  for (v_ego, v_l) in zip(v_egos, v_ls)]
 | 
						|
 | 
						|
fig = plt.figure()
 | 
						|
ax = fig.add_subplot(111, projection='3d')
 | 
						|
surf = ax.scatter(v_egos, v_ls, x_ls, s=1)
 | 
						|
# surf = ax.scatter(v_egos, v_ls, estimated, s=1)
 | 
						|
surf = ax.scatter(v_egos, v_ls, new_formula, s=1)
 | 
						|
 | 
						|
ax.set_xlabel('v ego')
 | 
						|
ax.set_ylabel('v lead')
 | 
						|
ax.set_zlabel('min distance')
 | 
						|
plt.show()
 | 
						|
 |