openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.

46 lines
1.4 KiB

#!/usr/bin/env python3
import numpy as np
from PIL import Image
from tinygrad.nn.state import get_parameters
from tinygrad.nn import optim
from tinygrad.helpers import getenv
from extra.training import train, evaluate
from extra.models.resnet import ResNet
from extra.datasets import fetch_mnist
class ComposeTransforms:
def __init__(self, trans):
self.trans = trans
def __call__(self, x):
for t in self.trans:
x = t(x)
return x
if __name__ == "__main__":
X_train, Y_train, X_test, Y_test = fetch_mnist()
X_train = X_train.reshape(-1, 28, 28).astype(np.uint8)
X_test = X_test.reshape(-1, 28, 28).astype(np.uint8)
classes = 10
TRANSFER = getenv('TRANSFER')
model = ResNet(getenv('NUM', 18), num_classes=classes)
if TRANSFER:
model.load_from_pretrained()
lr = 5e-3
transform = ComposeTransforms([
lambda x: [Image.fromarray(xx, mode='L').resize((64, 64)) for xx in x],
lambda x: np.stack([np.asarray(xx) for xx in x], 0),
lambda x: x / 255.0,
lambda x: np.tile(np.expand_dims(x, 1), (1, 3, 1, 1)).astype(np.float32),
])
for _ in range(5):
optimizer = optim.SGD(get_parameters(model), lr=lr, momentum=0.9)
train(model, X_train, Y_train, optimizer, 100, BS=32, transform=transform)
evaluate(model, X_test, Y_test, num_classes=classes, transform=transform)
lr /= 1.2
print(f'reducing lr to {lr:.7f}')