openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

44 lines
2.3 KiB

import os, gzip, tarfile, pickle
import numpy as np
from tinygrad import Tensor, dtypes
from tinygrad.helpers import fetch
def fetch_mnist(tensors=False):
parse = lambda file: np.frombuffer(gzip.open(file).read(), dtype=np.uint8).copy()
BASE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/" # http://yann.lecun.com/exdb/mnist/ lacks https
X_train = parse(fetch(f"{BASE_URL}train-images-idx3-ubyte.gz"))[0x10:].reshape((-1, 28*28)).astype(np.float32)
Y_train = parse(fetch(f"{BASE_URL}train-labels-idx1-ubyte.gz"))[8:].astype(np.int8)
X_test = parse(fetch(f"{BASE_URL}t10k-images-idx3-ubyte.gz"))[0x10:].reshape((-1, 28*28)).astype(np.float32)
Y_test = parse(fetch(f"{BASE_URL}t10k-labels-idx1-ubyte.gz"))[8:].astype(np.int8)
if tensors: return Tensor(X_train).reshape(-1, 1, 28, 28), Tensor(Y_train), Tensor(X_test).reshape(-1, 1, 28, 28), Tensor(Y_test)
else: return X_train, Y_train, X_test, Y_test
cifar_mean = [0.4913997551666284, 0.48215855929893703, 0.4465309133731618]
cifar_std = [0.24703225141799082, 0.24348516474564, 0.26158783926049628]
def fetch_cifar():
X_train = Tensor.empty(50000, 3*32*32, device=f'disk:/tmp/cifar_train_x', dtype=dtypes.uint8)
Y_train = Tensor.empty(50000, device=f'disk:/tmp/cifar_train_y', dtype=dtypes.int64)
X_test = Tensor.empty(10000, 3*32*32, device=f'disk:/tmp/cifar_test_x', dtype=dtypes.uint8)
Y_test = Tensor.empty(10000, device=f'disk:/tmp/cifar_test_y', dtype=dtypes.int64)
if not os.path.isfile("/tmp/cifar_extracted"):
def _load_disk_tensor(X, Y, db_list):
idx = 0
for db in db_list:
x, y = db[b'data'], np.array(db[b'labels'])
assert x.shape[0] == y.shape[0]
X[idx:idx+x.shape[0]].assign(x)
Y[idx:idx+x.shape[0]].assign(y)
idx += x.shape[0]
assert idx == X.shape[0] and X.shape[0] == Y.shape[0]
print("downloading and extracting CIFAR...")
fn = fetch('https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz')
tt = tarfile.open(fn, mode='r:gz')
_load_disk_tensor(X_train, Y_train, [pickle.load(tt.extractfile(f'cifar-10-batches-py/data_batch_{i}'), encoding="bytes") for i in range(1,6)])
_load_disk_tensor(X_test, Y_test, [pickle.load(tt.extractfile('cifar-10-batches-py/test_batch'), encoding="bytes")])
open("/tmp/cifar_extracted", "wb").close()
return X_train, Y_train, X_test, Y_test