openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

149 lines
4.6 KiB

import json
import os
from pathlib import Path
from transformers import BertTokenizer
import numpy as np
from tinygrad.helpers import fetch
BASEDIR = Path(__file__).parent / "squad"
def init_dataset():
os.makedirs(BASEDIR, exist_ok=True)
fetch("https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json", BASEDIR / "dev-v1.1.json")
with open(BASEDIR / "dev-v1.1.json") as f:
data = json.load(f)["data"]
examples = []
for article in data:
for paragraph in article["paragraphs"]:
text = paragraph["context"]
doc_tokens = []
prev_is_whitespace = True
for c in text:
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
for qa in paragraph["qas"]:
qa_id = qa["id"]
q_text = qa["question"]
examples.append({
"id": qa_id,
"question": q_text,
"context": doc_tokens,
"answers": list(map(lambda x: x["text"], qa["answers"]))
})
return examples
def _check_is_max_context(doc_spans, cur_span_index, position):
best_score, best_span_index = None, None
for di, (doc_start, doc_length) in enumerate(doc_spans):
end = doc_start + doc_length - 1
if position < doc_start:
continue
if position > end:
continue
num_left_context = position - doc_start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_length
if best_score is None or score > best_score:
best_score = score
best_span_index = di
return cur_span_index == best_span_index
def convert_example_to_features(example, tokenizer):
query_tokens = tokenizer.tokenize(example["question"])
if len(query_tokens) > 64:
query_tokens = query_tokens[:64]
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for i, token in enumerate(example["context"]):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
max_tokens_for_doc = 384 - len(query_tokens) - 3
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
length = min(length, max_tokens_for_doc)
doc_spans.append((start_offset, length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, 128)
outputs = []
for di, (doc_start, doc_length) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in query_tokens:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
for i in range(doc_length):
split_token_index = doc_start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
token_is_max_context[len(tokens)] = _check_is_max_context(doc_spans, di, split_token_index)
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < 384:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == 384
assert len(input_mask) == 384
assert len(segment_ids) == 384
outputs.append({
"input_ids": np.expand_dims(np.array(input_ids), 0).astype(np.float32),
"input_mask": np.expand_dims(np.array(input_mask), 0).astype(np.float32),
"segment_ids": np.expand_dims(np.array(segment_ids), 0).astype(np.float32),
"token_to_orig_map": token_to_orig_map,
"token_is_max_context": token_is_max_context,
"tokens": tokens,
})
return outputs
def iterate(tokenizer, start=0):
examples = init_dataset()
print(f"there are {len(examples)} pairs in the dataset")
for i in range(start, len(examples)):
example = examples[i]
features = convert_example_to_features(example, tokenizer)
# we need to yield all features here as the f1 score is the maximum over all features
yield features, example
if __name__ == "__main__":
tokenizer = BertTokenizer(str(Path(__file__).parents[2] / "weights" / "bert_vocab.txt"))
X, Y = next(iterate(tokenizer))
print(" ".join(X[0]["tokens"]))
print(X[0]["input_ids"].shape, Y)