openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

180 lines
7.4 KiB

#!/usr/bin/env python3
import numpy as np
import time
import sys
np.set_printoptions(linewidth=160)
np.set_printoptions(linewidth=1000, threshold=10000000000, suppress=False)
from tinygrad.runtime.ops_llvm import LLVMDevice, LLVMProgram, LLVMCompiler
from llvmlite import ir # type: ignore
from tinygrad.helpers import flat_mv
from tinygrad.device import MallocAllocator
# https://github.com/corsix/amx/blob/main/Instructions.md
# 12 lines for AMX support
from functools import partialmethod
class AMX:
@staticmethod
def nop_op_imm5(op, imm5, builder): builder.asm(ir.FunctionType(ir.VoidType(), []), f".word (0x201000 + ({op} << 5) + {imm5}); amx op {op} imm {imm5}", "", tuple(), True)
@staticmethod
def op_gpr(op, builder, gpr): builder.asm(ir.FunctionType(ir.VoidType(), [ir.IntType(64)]), f".word (0x201000 + ({op} << 5) + 0$0 - ((0$0 >> 4) * 6)); amx op {op} reg $0", "r", (gpr,), True)
set, clr = partialmethod(nop_op_imm5, 17, 0), partialmethod(nop_op_imm5, 17, 1)
ldx, ldy, stx, sty = partialmethod(op_gpr, 0), partialmethod(op_gpr, 1), partialmethod(op_gpr, 2), partialmethod(op_gpr, 3)
ldz, stz, ldzi, stzi = partialmethod(op_gpr, 4), partialmethod(op_gpr, 5), partialmethod(op_gpr, 6), partialmethod(op_gpr, 7)
extrx, extry = partialmethod(op_gpr, 8), partialmethod(op_gpr, 9)
fma64, fms64, fma32, fms32 = partialmethod(op_gpr, 10), partialmethod(op_gpr, 11), partialmethod(op_gpr, 12), partialmethod(op_gpr, 13)
mac16, fma16, fms16 = partialmethod(op_gpr, 14), partialmethod(op_gpr, 15), partialmethod(op_gpr, 16)
vecint, vecfp, matint, matfp, genlut = partialmethod(op_gpr, 18), partialmethod(op_gpr, 19), partialmethod(op_gpr, 20), partialmethod(op_gpr, 21), partialmethod(op_gpr, 22)
def int_const(x): return ir.Constant(ir.IntType(64), x)
N = 4096
# N = 1024
# N = 64
BW = N*N*4
# matrix is 64M, max load bandwidth is 57 GB/s
# cache line looks like 256 bytes (64 floats)
na = np.zeros((256), dtype=np.float32)
# na = np.zeros((N, N), dtype=np.float32)
nb = np.random.randn(N, N).astype(np.float32)
nc = np.random.randn(N, N).astype(np.float32)
ns = nb.reshape(-1, 32).sum(axis=0)
a = MallocAllocator.alloc(na.size * np.dtype(np.float32).itemsize)
b = MallocAllocator.alloc(nb.size * np.dtype(np.float32).itemsize)
c = MallocAllocator.alloc(nc.size * np.dtype(np.float32).itemsize)
MallocAllocator._copyin(b, flat_mv(nb.data))
MallocAllocator._copyin(c, flat_mv(nc.data))
module = ir.Module(name=__file__)
func = ir.Function(module, ir.FunctionType(ir.IntType(64), [ir.FloatType().as_pointer()]*3), name='exec')
# load all
entry = ir.IRBuilder(func.append_basic_block(name="entry"))
zm, xm, ym = [entry.ptrtoint(func.args[i], ir.IntType(64)) for i in range(3)]
loop_1 = ir.IRBuilder(func.append_basic_block(name="loop_y"))
loop_1_exit = ir.IRBuilder(func.append_basic_block(name="loop_y_exit"))
exit = ir.IRBuilder(func.append_basic_block(name="exit"))
y = loop_1.phi(ir.IntType(64), name="y")
y.add_incoming(int_const(0), entry._block)
yp = loop_1_exit.add(y, int_const(32*2))
y.add_incoming(yp, loop_1_exit._block)
prefetch_function = ir.Function(module, ir.FunctionType(ir.VoidType(), [ir.PointerType(ir.FloatType()), ir.IntType(32), ir.IntType(32), ir.IntType(32)]), name="llvm.prefetch")
xptr = y
addr = loop_1_exit.add(xm, loop_1_exit.mul(int_const(4), xptr))
#prefetch_ptr = loop_1_exit.inttoptr(loop_1_exit.add(addr, int_const(128)), ir.PointerType(ir.FloatType()))
#loop_1_exit.call(prefetch_function, [prefetch_ptr, ir.IntType(32)(0), ir.IntType(32)(2), ir.IntType(32)(1)])
AMX.ldx(loop_1_exit, loop_1_exit.add(int_const(1<<62), addr))
xptr = loop_1_exit.add(xptr, int_const(32))
AMX.ldy(loop_1_exit, loop_1_exit.add(int_const(1<<62), loop_1_exit.add(xm, loop_1_exit.mul(int_const(4), xptr))))
AMX.fma32(loop_1_exit, int_const(1 << 63 | 1 << 28))
AMX.fma32(loop_1_exit, int_const(1 << 63 | 1 << 28 | 1 << 20 | (16*4)<<10))
AMX.fma32(loop_1_exit, int_const(1 << 63 | 1 << 29))
AMX.fma32(loop_1_exit, int_const(1 << 63 | 1 << 29 | 1 << 20 | (16*4)))
AMX.set(entry)
AMX.stz(exit, exit.add(zm, int_const(1 << 62 | (0 << 56) | 0)))
AMX.clr(exit)
entry.branch(loop_1._block)
loop_1.branch(loop_1_exit._block)
loop_1_exit.cbranch(loop_1_exit.icmp_unsigned("==", yp, int_const(N*N)), exit._block, loop_1._block)
exit.ret(int_const(0))
device = LLVMDevice("llvm")
prog = LLVMProgram(device, "exec", LLVMCompiler(device).compile(str(module)))
"""
loop_1 = ir.IRBuilder(func.append_basic_block(name="loop_y"))
loop_2 = ir.IRBuilder(func.append_basic_block(name="loop_x"))
loop_3 = ir.IRBuilder(func.append_basic_block(name="loop_k"))
loop_3_exit = ir.IRBuilder(func.append_basic_block(name="loop_k_exit"))
loop_2_exit = ir.IRBuilder(func.append_basic_block(name="loop_x_exit"))
loop_1_exit = ir.IRBuilder(func.append_basic_block(name="loop_y_exit"))
y = loop_1.phi(ir.IntType(64), name="y")
x = loop_2.phi(ir.IntType(64), name="x")
k = loop_3.phi(ir.IntType(64), name="k")
exit = ir.IRBuilder(func.append_basic_block(name="exit"))
AMX.set(loop_2)
# stride
xptr = loop_3_exit.add(x, loop_3_exit.mul(k, int_const(N)))
yptr = loop_3_exit.add(y, loop_3_exit.mul(k, int_const(N)))
# if you are okay with the wrong answer, this is faster
#xptr = loop_3_exit.add(x, loop_3_exit.mul(k, int_const(32)))
#yptr = loop_3_exit.add(y, loop_3_exit.mul(k, int_const(32)))
# double loads load 32 floats
AMX.ldx(loop_3_exit, loop_3_exit.add(int_const(1<<62), loop_3_exit.add(xm, loop_3_exit.mul(int_const(4), xptr))))
AMX.ldy(loop_3_exit, loop_3_exit.add(int_const(1<<62), loop_3_exit.add(ym, loop_3_exit.mul(int_const(4), yptr))))
# <Z row> <X offset> <Y offset>
AMX.fma32(loop_3_exit, int_const(0<<20 | (0*16*4)<<10 | (0*16*4)))
AMX.fma32(loop_3_exit, int_const(1<<20 | (1*16*4)<<10 | (0*16*4)))
AMX.fma32(loop_3_exit, int_const(2<<20 | (0*16*4)<<10 | (1*16*4)))
AMX.fma32(loop_3_exit, int_const(3<<20 | (1*16*4)<<10 | (1*16*4)))
# store
gptr = loop_2_exit.mul(loop_2_exit.add(loop_2.mul(y, int_const(N)), x), int_const(4))
zmp = loop_2_exit.add(zm, gptr)
for j in range(2):
for r in range(16):
z_row = j*2
ptr = ((j*16)+r)*N
AMX.stz(loop_2_exit, loop_2_exit.add(zmp, int_const(1 << 62 | ((r*4+z_row) << 56) | ptr*4)))
AMX.clr(loop_2_exit)
yp = loop_1_exit.add(y, int_const(32))
xp = loop_2_exit.add(x, int_const(32))
kp = loop_3_exit.add(k, int_const(1))
y.add_incoming(int_const(0), entry._block)
x.add_incoming(int_const(0), loop_1._block)
k.add_incoming(int_const(0), loop_2._block)
y.add_incoming(yp, loop_1_exit._block)
x.add_incoming(xp, loop_2_exit._block)
k.add_incoming(kp, loop_3_exit._block)
entry.branch(loop_1._block)
loop_1.branch(loop_2._block)
loop_2.branch(loop_3._block)
loop_3.branch(loop_3_exit._block)
loop_3_exit.cbranch(loop_3_exit.icmp_unsigned("==", kp, int_const(N)), loop_2_exit._block, loop_3._block)
loop_2_exit.cbranch(loop_2_exit.icmp_unsigned("==", xp, int_const(N)), loop_1_exit._block, loop_2._block)
loop_1_exit.cbranch(loop_1_exit.icmp_unsigned("==", yp, int_const(N)), exit._block, loop_1._block)
exit.ret(int_const(0))
device = LLVMDevice("llvm")
prog = LLVMProgram(device, "exec", LLVMCompiler(device).compile(str(module)))
"""
def timeit(fxn):
st = time.perf_counter()
et = fxn()
return time.perf_counter() - st
tm = min([timeit(lambda: prog(a, b, c, N**2)) for _ in range(20)])
MallocAllocator._copyout(flat_mv(na.data), a)
print(f"{N*N:10d} {tm*1e6:9.2f} us, {BW*1e-9/tm:.2f} GB/s")
np.testing.assert_allclose(na[:ns.shape[0]], ns, atol=1e-4, rtol=1e-4)
# comp = (nb.T @ nc).T
# np.testing.assert_allclose(na, comp, atol=1e-4, rtol=1e-5)