openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

52 lines
1.6 KiB

import numpy as np
from tinygrad.tensor import Tensor, _to_np_dtype
def mask_like(like, mask_inx, mask_value = 1.0):
mask = np.zeros(like.shape, dtype=_to_np_dtype(like.dtype)).reshape(-1)
mask[mask_inx] = mask_value
return mask.reshape(like.shape)
def jacobian(func, input):
output = func(input)
ji = input.numpy().reshape(-1).shape[-1]
jo = output.numpy().reshape(-1).shape[-1]
J = np.zeros((jo,ji), dtype=np.float32)
for o in range(jo):
input.grad = None
output = func(input)
# tinygrad doesn't support slicing, tiny-hack to select
# the needed scalar an backpropagate only through it
o_scalar = Tensor(mask_like(output, o, 1.)).mul(output).sum()
o_scalar = Tensor(mask_like(output, o, 1.)).mul(output).sum()
o_scalar.backward()
for i, grad in enumerate(input.grad.numpy().reshape(-1)):
J[o,i] = grad
return J
def numerical_jacobian(func, input, eps = 1e-3):
output = func(input)
ji = input.numpy().reshape(-1).shape[-1]
jo = output.numpy().reshape(-1).shape[-1]
NJ = np.zeros((jo, ji), dtype=np.float32)
for i in range(ji):
eps_perturb = mask_like(input, i, mask_value = eps)
output_perturb_add = func(Tensor(input.numpy() + eps_perturb)).numpy().reshape(-1)
output_perturb_sub = func(Tensor(input.numpy() - eps_perturb)).numpy().reshape(-1)
grad_approx = ((output_perturb_add) - (output_perturb_sub)) / (2*eps)
NJ[:,i] = grad_approx
return NJ
def gradcheck(func, input, eps = 1e-3, atol = 1e-3, rtol = 1e-3):
NJ = numerical_jacobian(func, input, eps)
J = jacobian(func, input)
return np.allclose(J, NJ, atol = atol, rtol = rtol)