openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

60 lines
2.4 KiB

from pathlib import Path
import torch
from tinygrad import nn
from tinygrad.tensor import Tensor
from tinygrad.helpers import fetch, get_child
class DownsampleBlock:
def __init__(self, c0, c1, stride=2):
self.conv1 = [nn.Conv2d(c0, c1, kernel_size=(3,3,3), stride=stride, padding=(1,1,1,1,1,1), bias=False), nn.InstanceNorm(c1), Tensor.relu]
self.conv2 = [nn.Conv2d(c1, c1, kernel_size=(3,3,3), padding=(1,1,1,1,1,1), bias=False), nn.InstanceNorm(c1), Tensor.relu]
def __call__(self, x):
return x.sequential(self.conv1).sequential(self.conv2)
class UpsampleBlock:
def __init__(self, c0, c1):
self.upsample_conv = [nn.ConvTranspose2d(c0, c1, kernel_size=(2,2,2), stride=2)]
self.conv1 = [nn.Conv2d(2 * c1, c1, kernel_size=(3,3,3), padding=(1,1,1,1,1,1), bias=False), nn.InstanceNorm(c1), Tensor.relu]
self.conv2 = [nn.Conv2d(c1, c1, kernel_size=(3,3,3), padding=(1,1,1,1,1,1), bias=False), nn.InstanceNorm(c1), Tensor.relu]
def __call__(self, x, skip):
x = x.sequential(self.upsample_conv)
x = Tensor.cat(x, skip, dim=1)
return x.sequential(self.conv1).sequential(self.conv2)
class UNet3D:
def __init__(self, in_channels=1, n_class=3):
filters = [32, 64, 128, 256, 320]
inp, out = filters[:-1], filters[1:]
self.input_block = DownsampleBlock(in_channels, filters[0], stride=1)
self.downsample = [DownsampleBlock(i, o) for i, o in zip(inp, out)]
self.bottleneck = DownsampleBlock(filters[-1], filters[-1])
self.upsample = [UpsampleBlock(filters[-1], filters[-1])] + [UpsampleBlock(i, o) for i, o in zip(out[::-1], inp[::-1])]
self.output = {"conv": nn.Conv2d(filters[0], n_class, kernel_size=(1, 1, 1))}
def __call__(self, x):
x = self.input_block(x)
outputs = [x]
for downsample in self.downsample:
x = downsample(x)
outputs.append(x)
x = self.bottleneck(x)
for upsample, skip in zip(self.upsample, outputs[::-1]):
x = upsample(x, skip)
x = self.output["conv"](x)
return x
def load_from_pretrained(self):
fn = Path(__file__).parents[1] / "weights" / "unet-3d.ckpt"
fetch("https://zenodo.org/record/5597155/files/3dunet_kits19_pytorch.ptc?download=1", fn)
state_dict = torch.jit.load(fn, map_location=torch.device("cpu")).state_dict()
for k, v in state_dict.items():
obj = get_child(self, k)
assert obj.shape == v.shape, (k, obj.shape, v.shape)
obj.assign(v.numpy())
if __name__ == "__main__":
mdl = UNet3D()
mdl.load_from_pretrained()