You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
66 lines
3.1 KiB
66 lines
3.1 KiB
7 hours ago
|
from tinygrad import Tensor
|
||
|
from tinygrad.tensor import _to_np_dtype
|
||
|
from tinygrad.frontend.onnx import OnnxRunner
|
||
|
from extra.onnx import OnnxValue
|
||
|
import onnx
|
||
|
import numpy as np
|
||
|
import onnxruntime as ort
|
||
|
|
||
|
def get_example_inputs(graph_inputs:dict[str, OnnxValue], config={}):
|
||
|
def _get_shape(onnx_shape: tuple[str|int]):
|
||
|
shape = []
|
||
|
for onnx_dim in onnx_shape:
|
||
|
match onnx_dim:
|
||
|
case int(): shape.append(onnx_dim)
|
||
|
case "width" | "height":
|
||
|
size = config.get("size", {})
|
||
|
shape.append(size) if isinstance(size, int) else shape.append(size.get(onnx_dim, 224))
|
||
|
case "sequence" | "sequence_length" | "decoder_sequence_length": shape.append(64)
|
||
|
case "encoder_sequence_length": shape.append(config.get("nb_max_frames", 64))
|
||
|
case "past_decoder_sequence_length" | "encoder_sequence_length_out": shape.append(64)
|
||
|
case "encoder_sequence_length / 2": shape.append(32)
|
||
|
case "batch_size": shape.append(1)
|
||
|
case "num_channels": shape.append(config.get("in_channels", 3))
|
||
|
case "num_channels_latent": shape.append(config.get("latent_channels", 4))
|
||
|
case "height_latent" | "width_latent": shape.append(config.get("sample_size", 1024) // 8)
|
||
|
case "feature_size": shape.append(config.get("num_mel_bins", 128))
|
||
|
case _: shape.append(1)
|
||
|
return shape
|
||
|
def _get_value(name, shape, dtype):
|
||
|
match name:
|
||
|
case "input_ids":
|
||
|
vocab_size = config.get("text_config", {}).get("vocab_size") or config.get("vocab_size", 32)
|
||
|
val = np.random.randint(0, vocab_size-1, shape)
|
||
|
case "attention_mask": val = np.random.randint(0, 2, size=shape)
|
||
|
case "token_type_ids": val = np.random.randint(0, config.get("type_vocab_size", 2), shape)
|
||
|
case "image_tensor": val = np.random.randint(0, 256, shape)
|
||
|
case "task_id": return Tensor(0, dtype=dtype)
|
||
|
case _: val = np.random.uniform(size=shape) * 8
|
||
|
return Tensor(val.astype(_to_np_dtype(dtype))).realize()
|
||
|
|
||
|
ret: dict[str, Tensor] = {}
|
||
|
for name, spec in graph_inputs.items():
|
||
|
assert not spec.is_optional and not spec.is_sequence, "only allow tensor input for now"
|
||
|
shape = _get_shape(spec.shape)
|
||
|
value = _get_value(name, shape, spec.dtype)
|
||
|
ret.update({name:value})
|
||
|
return ret
|
||
|
|
||
|
def validate(onnx_file, inputs, rtol=1e-5, atol=1e-5):
|
||
|
run_onnx = OnnxRunner(onnx.load(onnx_file))
|
||
|
|
||
|
ort_options = ort.SessionOptions()
|
||
|
ort_options.log_severity_level = 3
|
||
|
ort_sess = ort.InferenceSession(onnx_file, ort_options, ["CPUExecutionProvider"])
|
||
|
np_inputs = {k:v.numpy() if isinstance(v, Tensor) else v for k,v in inputs.items()}
|
||
|
out_names = list(run_onnx.graph_outputs)
|
||
|
out_values = ort_sess.run(out_names, np_inputs)
|
||
|
ort_out = dict(zip(out_names, out_values))
|
||
|
|
||
|
tinygrad_out = run_onnx(inputs)
|
||
|
|
||
|
assert tinygrad_out.keys() == ort_out.keys()
|
||
|
for k in tinygrad_out.keys():
|
||
|
tiny_v, onnx_v = tinygrad_out[k], ort_out[k]
|
||
|
if tiny_v is None: assert onnx_v is None, f"{k}: {tiny_v=}, {onnx_v=}"
|
||
|
else: np.testing.assert_allclose(tiny_v.numpy(), onnx_v, rtol=rtol, atol=atol, err_msg=f"For tensor '{k}' in {tinygrad_out.keys()}")
|