openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

130 lines
4.2 KiB

import sys, sqlite3, pickle, math
from collections import defaultdict
from tqdm import tqdm, trange
import numpy as np
# stuff needed to unpack a kernel
from tinygrad.ops import LazyOp, TernaryOps, BinaryOps, UnaryOps, ReduceOps, BufferOps, MemBuffer, ConstBuffer
from tinygrad.dtype import dtypes
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import View
from tinygrad.ops import Variable
inf, nan = float('inf'), float('nan')
from tinygrad.codegen.kernel import Opt, OptOps
# more stuff
from tinygrad.codegen.kernel import Kernel
from tinygrad.engine.search import actions
from extra.optimization.helpers import lin_to_feats
from extra.optimization.pretrain_valuenet import ValueNet
from tinygrad.nn.optim import Adam
from tinygrad.nn.state import get_parameters, get_state_dict, safe_save, safe_load, load_state_dict
import random
from tinygrad.tensor import Tensor
from tinygrad.helpers import getenv
def dataset_from_cache(fn):
conn = sqlite3.connect(fn)
cur = conn.cursor()
cur.execute("SELECT * FROM time_linearizer")
grouped = defaultdict(dict)
for f in tqdm(cur.fetchall()): grouped[f[0]][f[1:-1]] = pickle.loads(f[-1])
opts_to_outcome = {}
for ast,sk in grouped.items():
cnts = defaultdict(int)
for sks,tm in sk.items():
if sks[1] != 1: continue
opts = eval(sks[0])
cnts[(len(opts), sks[1])] += 1
opts_to_outcome[(ast, tuple(opts))] = tm
#print(cnts)
S,A,V = [], [], []
for ast,k in tqdm(opts_to_outcome):
if len(k) == 0: continue
old_tm = min(opts_to_outcome[(ast,k[:-1])])
new_tm = min(opts_to_outcome[(ast,k)])
if math.isinf(old_tm) or math.isinf(new_tm) or old_tm < 1e-9 or new_tm < 1e-9: continue
try:
lin = Kernel(eval(ast))
except Exception:
continue
for opt in k[:-1]: lin.apply_opt(opt)
act = k[-1]
log_ratio = math.log(old_tm/new_tm)
#print(f"ratio: {old_tm/new_tm:6.2f}x (log {log_ratio:5.2f}) from {str(act):50s} on {lin.colored_shape()}")
S.append(lin_to_feats(lin, use_sts=True))
A.append(actions.index(act))
V.append([log_ratio]) # NOTE: i have written the bug many times with this having the wrong dim
S, A, V = np.array(S), np.array(A), np.array(V, dtype=np.float32)
X = np.zeros((S.shape[0], S.shape[1]+len(actions)), dtype=np.float32)
X[:, :S.shape[1]] = S
X[range(S.shape[0]), S.shape[1]+A] = 1.0
return X, V
def log_likelihood(x:Tensor, mu:Tensor, log_sigma:Tensor):
#print(x.shape, mu.shape, log_sigma.shape)
#return (x-mu).abs() * (-log_sigma).exp() + log_sigma
return (x-mu).square() * (-2*log_sigma).exp() / 2 + log_sigma
if __name__ == "__main__":
if getenv("REGEN"):
X,V = dataset_from_cache(sys.argv[1] if len(sys.argv) > 1 else "/tmp/tinygrad_cache")
safe_save({"X": Tensor(X), "V": Tensor(V)}, "/tmp/dataset")
else:
ld = safe_load("/tmp/dataset")
X,V = ld['X'].numpy(), ld['V'].numpy()
print(X.shape, V.shape)
order = list(range(X.shape[0]))
random.shuffle(order)
X, V = X[order], V[order]
ratio = -512
X_test, V_test = Tensor(X[ratio:]), Tensor(V[ratio:])
X,V = X[:ratio], V[:ratio]
print(X.shape, V.shape)
#print(X[0], V[0])
#print(X[-1], V[-1])
print(X.shape)
net = ValueNet(X.shape[1], 2)
optim = Adam(get_parameters(net))
def get_minibatch(X,Y,bs):
xs, ys = [], []
#random.seed(1337)
for _ in range(bs):
sel = random.randint(0, len(X)-1)
xs.append(X[sel])
ys.append(Y[sel])
return Tensor(xs), Tensor(ys)
Tensor.no_grad, Tensor.training = False, True
losses = []
test_losses = []
test_loss = float('inf')
for i in (t:=trange(2000)):
x,y = get_minibatch(X,V,bs=256)
out = net(x)
#loss = (out-y).square().mean()
loss = log_likelihood(y, out[:, 0:1], out[:, 1:2]).mean()
optim.zero_grad()
loss.backward()
optim.step()
t.set_description(f"loss {loss.numpy():7.2f}, test loss {test_loss:7.2f}")
losses.append(loss.numpy().item())
test_losses.append(test_loss)
if i % 10: test_loss = (net(X_test)[:, 0:1]-V_test).square().mean().numpy().item()
safe_save(get_state_dict(net), "/tmp/qnet.safetensors")
import matplotlib.pyplot as plt
plt.plot(losses[20:])
plt.plot(test_losses[20:])
plt.show()