You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
241 lines
9.3 KiB
241 lines
9.3 KiB
1 month ago
|
#!/usr/bin/env python
|
||
|
import gc, unittest
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from tinygrad import GlobalCounters, Tensor, Device
|
||
|
from tinygrad.helpers import getenv, Context
|
||
|
from tinygrad.nn.state import get_parameters
|
||
|
from tinygrad.engine.realize import capturing
|
||
|
from tinygrad.tensor import _to_np_dtype
|
||
|
|
||
|
class CLCache:
|
||
|
def __init__(self, allowed=None, strict=False, preclear=True, var_vals=None):
|
||
|
self.allowed, self.strict, self.preclear, self.var_vals = allowed, strict, preclear, var_vals if var_vals is not None else {}
|
||
|
self.count = 0
|
||
|
def add(self, ei): self.count += 1
|
||
|
def __enter__(self):
|
||
|
if self.preclear:
|
||
|
gc.collect()
|
||
|
for x in [x for x in gc.get_objects() if isinstance(x, Tensor)]:
|
||
|
x.realize()
|
||
|
GlobalCounters.reset()
|
||
|
capturing.append(self)
|
||
|
print("cache: entering")
|
||
|
return self
|
||
|
def __exit__(self, _type, value, traceback):
|
||
|
capturing.clear()
|
||
|
print(f"cache: exiting with size {self.count}", f"allowed {self.allowed}" if self.allowed is not None else "")
|
||
|
if self.allowed is not None:
|
||
|
assert self.count == self.allowed, f"{self.count} != {self.allowed}"
|
||
|
|
||
|
from extra.models.convnext import ConvNeXt
|
||
|
from extra.models.efficientnet import EfficientNet
|
||
|
from extra.models.resnet import ResNet18
|
||
|
from extra.models.vit import ViT
|
||
|
|
||
|
@unittest.skipUnless(Device.DEFAULT == "GPU", "Not Implemented")
|
||
|
class TestInferenceMinKernels(unittest.TestCase):
|
||
|
def setUp(self):
|
||
|
self.training_old = Tensor.training
|
||
|
Tensor.training = False
|
||
|
def tearDown(self):
|
||
|
Tensor.training = self.training_old
|
||
|
|
||
|
def test_convnext(self):
|
||
|
model = ConvNeXt()
|
||
|
for p in get_parameters(model): p.assign(np.zeros(p.shape, dtype=_to_np_dtype(p.dtype)))
|
||
|
img = Tensor.randn(1, 3, 224, 224)
|
||
|
with CLCache(143):
|
||
|
model(img).realize()
|
||
|
|
||
|
def test_enet(self):
|
||
|
model = EfficientNet(getenv("ENET_NUM", 0), has_se=False)
|
||
|
for p in get_parameters(model): p.assign(np.zeros(p.shape, dtype=_to_np_dtype(p.dtype)))
|
||
|
img = Tensor.randn(1, 3, 224, 224)
|
||
|
with CLCache(51):
|
||
|
model.forward(img).realize()
|
||
|
|
||
|
def test_enet_se(self):
|
||
|
model = EfficientNet(getenv("ENET_NUM", 0), has_se=True)
|
||
|
for p in get_parameters(model): p.assign(np.zeros(p.shape, dtype=_to_np_dtype(p.dtype)))
|
||
|
img = Tensor.randn(1, 3, 224, 224)
|
||
|
# TODO: this seems very high
|
||
|
with CLCache(115):
|
||
|
model.forward(img).realize()
|
||
|
|
||
|
def test_resnet(self):
|
||
|
model = ResNet18()
|
||
|
for p in get_parameters(model): p.assign(np.zeros(p.shape, dtype=_to_np_dtype(p.dtype)))
|
||
|
img = Tensor.randn(1, 3, 224, 224)
|
||
|
with CLCache(23):
|
||
|
model.forward(img).realize()
|
||
|
|
||
|
def test_vit(self):
|
||
|
model = ViT(embed_dim=192, num_heads=3)
|
||
|
for p in get_parameters(model): p.assign(np.zeros(p.shape, dtype=_to_np_dtype(p.dtype)))
|
||
|
img = Tensor.randn(1, 3, 224, 224)
|
||
|
with CLCache(209) as cache: # NOTE: this is way too high
|
||
|
out = model.forward(img)
|
||
|
assert cache.count == 0, "ViT prerealized?"
|
||
|
out.realize()
|
||
|
|
||
|
@unittest.skip("llama is fp16 but CI does not have fp16")
|
||
|
def test_llama(self):
|
||
|
from examples.llama import Transformer
|
||
|
args_tiny = {"dim": 512, "hidden_dim": 1024, "n_heads": 8, "n_layers": 4, "norm_eps": 1e-05, "vocab_size": 1000}
|
||
|
model = Transformer(**args_tiny)
|
||
|
for p in get_parameters(model): p.assign(np.zeros(p.shape, dtype=_to_np_dtype(p.dtype)))
|
||
|
inp = Tensor([[1,2,3,4]])
|
||
|
with CLCache(100):
|
||
|
model(inp, 0).realize()
|
||
|
|
||
|
@unittest.skipUnless(Device.DEFAULT == "GPU", "Not Implemented")
|
||
|
class TestOptBinOp(unittest.TestCase):
|
||
|
def _test_no_binop_rerun(self, f1, f2=None, allowed=1):
|
||
|
a = Tensor.randn(16, 16)
|
||
|
b = Tensor.randn(16, 16)
|
||
|
with CLCache() as cache:
|
||
|
c = f1(a, b)
|
||
|
if f2 is not None: d = f2(a, b)
|
||
|
c.realize()
|
||
|
if f2 is not None: d.realize()
|
||
|
assert cache.count == allowed, "binop was rerun!"
|
||
|
if f2 is not None: np.testing.assert_allclose(c.numpy().ravel(), d.numpy().ravel(), rtol=1e-3, atol=1e-5)
|
||
|
|
||
|
def test_no_binop_rerun(self): return self._test_no_binop_rerun(lambda a,b: a*b, lambda a,b: (a*b).reshape(16, 16, 1))
|
||
|
def test_no_binop_rerun_alt(self): return self._test_no_binop_rerun(lambda a,b: (a*b).reshape(16, 16, 1), lambda a,b: a*b)
|
||
|
def test_no_binop_rerun_reduce_broadcast(self):
|
||
|
return self._test_no_binop_rerun(lambda a,b: a.sum()+b, lambda a,b: a.sum().reshape(1,1)+b, allowed=2)
|
||
|
|
||
|
@unittest.skip("this test started failing with the new change, based movementop issue")
|
||
|
def test_no_binop_rerun_transposed(self): return self._test_no_binop_rerun(lambda a,b: (a.T*b.T).T, lambda a,b: a*b)
|
||
|
def test_no_binop_rerun_mid_reshape(self): return self._test_no_binop_rerun(lambda a,b: (a*b).reshape(256)+a.reshape(256))
|
||
|
|
||
|
# currently non working tests
|
||
|
# def test_no_binop_rerun_preshape(self): return self._test_no_binop_rerun(lambda a,b: a.reshape(16, 16, 1)*b.reshape(16, 16, 1), lambda a,b: a*b)
|
||
|
#def test_no_binop_rerun_reduce(self): return self._test_no_binop_rerun(lambda a,b: (a*b).sum(), lambda a,b: (a*b).reshape(16, 16, 1).sum())
|
||
|
#def test_no_binop_rerun_reduce_alt(self): return self._test_no_binop_rerun(lambda a,b: a.sum(1)+b[0], lambda a,b: a.sum(1).reshape(1,16)+b[0])
|
||
|
|
||
|
@unittest.skipUnless(Device.DEFAULT == "GPU", "Not Implemented")
|
||
|
class TestOptReduceLoop(unittest.TestCase):
|
||
|
def test_loop_left(self):
|
||
|
a = Tensor.randn(16, 16)
|
||
|
b = Tensor.randn(16, 16)
|
||
|
with CLCache() as cache:
|
||
|
t = a.sum(0)
|
||
|
b = t.reshape(16,1).expand(16,16).sum(0)
|
||
|
c = (t+b)
|
||
|
c.realize()
|
||
|
assert cache.count == 2, "loop left fusion broken"
|
||
|
|
||
|
def test_loop_right(self):
|
||
|
a = Tensor.randn(16, 16)
|
||
|
b = Tensor.randn(16, 16)
|
||
|
with CLCache() as cache:
|
||
|
t = a.sum(0)
|
||
|
b = t.reshape(16,1).expand(16,16).sum(0)
|
||
|
c = (b+t)
|
||
|
c.realize()
|
||
|
assert cache.count == 2, "loop right fusion broken"
|
||
|
|
||
|
@unittest.skipUnless(Device.DEFAULT == "GPU", "Not Implemented")
|
||
|
class TestOptWChild(unittest.TestCase):
|
||
|
@unittest.skip("this no longer happens, use realize")
|
||
|
def test_unrealized_child(self):
|
||
|
a = Tensor.randn(16, 16)
|
||
|
b = Tensor.randn(16, 16)
|
||
|
with CLCache() as cache:
|
||
|
c = (a*b).sum()
|
||
|
d = c+1
|
||
|
e = c+2 # noqa: F841
|
||
|
d.realize()
|
||
|
assert cache.count == 2, "don't fuse if you have children"
|
||
|
|
||
|
@unittest.skipUnless(Device.DEFAULT == "GPU", "Not Implemented")
|
||
|
class TestOpt(unittest.TestCase):
|
||
|
def test_muladd(self):
|
||
|
a,b,c = [Tensor.randn(2,2).realize() for _ in range(3)]
|
||
|
na,nb,nc = a.numpy(),b.numpy(),c.numpy()
|
||
|
with CLCache(allowed=1):
|
||
|
d = a * b + c
|
||
|
d.realize()
|
||
|
np.testing.assert_allclose(d.numpy(), na*nb+nc, rtol=1e-5, atol=1e-7)
|
||
|
|
||
|
def test_permute_was_pushed(self):
|
||
|
a = Tensor.randn(16, 16, 16)
|
||
|
with CLCache(2):
|
||
|
c = a.sum(2)
|
||
|
d = c.permute(1,0).contiguous()
|
||
|
d.realize()
|
||
|
np.testing.assert_allclose(a.numpy().sum(2).transpose(1,0), d.numpy(), rtol=1e-3, atol=1e-5)
|
||
|
|
||
|
def test_permute_was_pushed_through_contract_reshape(self):
|
||
|
a = Tensor.randn(4, 4, 4, 4, 4)
|
||
|
with CLCache(2):
|
||
|
c = a.sum(-1)
|
||
|
d = c.reshape(16,16).permute(1,0).contiguous()
|
||
|
d.realize()
|
||
|
np.testing.assert_allclose(a.numpy().sum(-1).reshape(16,16).transpose(1,0), d.numpy(), rtol=1e-3, atol=1e-5)
|
||
|
|
||
|
def test_permute_was_pushed_through_contractw1s_reshape(self):
|
||
|
a = Tensor.randn(4, 4, 4, 4, 4)
|
||
|
with CLCache(2):
|
||
|
c = a.sum(-1)
|
||
|
d = c.reshape(16,1,16).permute(2,1,0).contiguous()
|
||
|
d.realize()
|
||
|
np.testing.assert_allclose(a.numpy().sum(-1).reshape(16,1,16).transpose(2,1,0), d.numpy(), rtol=1e-3, atol=1e-5)
|
||
|
|
||
|
def test_permute_was_pushed_through_expand_reshape(self):
|
||
|
a = Tensor.randn(16, 16, 16)
|
||
|
with CLCache(2):
|
||
|
c = a.sum(2)
|
||
|
d = c.reshape(4,4,4,4).permute(2,3,0,1).contiguous()
|
||
|
d.realize()
|
||
|
np.testing.assert_allclose(a.numpy().sum(2).transpose(1,0).reshape(4,4,4,4), d.numpy(), rtol=1e-3, atol=1e-5)
|
||
|
|
||
|
def test_no_reduceop_rerun(self):
|
||
|
a = Tensor.randn(16, 16, 16)
|
||
|
with CLCache() as cache:
|
||
|
c = a.sum(2)
|
||
|
d = a.sum(2).permute(1,0)
|
||
|
c.realize()
|
||
|
d.realize()
|
||
|
cache_len = cache.count
|
||
|
np.testing.assert_allclose(c.numpy().transpose(1,0), d.numpy(), rtol=1e-3, atol=1e-5)
|
||
|
assert cache_len == 1, "reduceop was rerun!"
|
||
|
|
||
|
def test_no_reduceop_rerun_alt(self):
|
||
|
a = Tensor.randn(16, 16, 16)
|
||
|
with CLCache() as cache:
|
||
|
c = a.sum(2).permute(1,0)
|
||
|
d = a.sum(2)
|
||
|
c.realize()
|
||
|
d.realize()
|
||
|
cache_len = cache.count
|
||
|
np.testing.assert_allclose(c.numpy(), d.numpy().transpose(1,0), rtol=1e-3, atol=1e-5)
|
||
|
assert cache_len == 1, "reduceop was rerun!"
|
||
|
|
||
|
def test_expand_reduce_is_folded_on_same_axis(self):
|
||
|
with Context(FUSE_CONV_BW=1):
|
||
|
for axis in [0, 1]:
|
||
|
for n in [4, 8, 16]:
|
||
|
b = torch.ones(n, n).sum(axis).reshape(n, 1).expand(n, n).sum(axis)
|
||
|
with CLCache(allowed=2):
|
||
|
a = Tensor.ones(n, n).contiguous().sum(axis).reshape(n, 1).expand(n, n).sum(axis)
|
||
|
a.realize()
|
||
|
np.testing.assert_allclose(a.numpy(), b.numpy(), rtol=1e-3, atol=1e-5)
|
||
|
|
||
|
def test_expand_reduce_is_folded_on_different_axes(self):
|
||
|
with Context(FUSE_CONV_BW=1):
|
||
|
axis1, axis2 = 0, 1
|
||
|
for n in [4, 8, 16]:
|
||
|
b = torch.ones(n, n).sum(axis1).reshape(n, 1).expand(n, n).sum(axis2)
|
||
|
with CLCache(allowed=2):
|
||
|
a = Tensor.ones(n, n).contiguous().sum(axis1).reshape(n, 1).expand(n, n).sum(axis2)
|
||
|
a.realize()
|
||
|
np.testing.assert_allclose(a.numpy(), b.numpy(), rtol=1e-3, atol=1e-5)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
unittest.main()
|