openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

48 lines
1.7 KiB

#!/usr/bin/env python
import unittest
import numpy as np
from tinygrad.tensor import Tensor
from extra.models.rnnt import LSTM
import torch
class TestRNNT(unittest.TestCase):
def test_lstm(self):
BS, SQ, IS, HS, L = 2, 20, 40, 128, 2
# create in torch
with torch.no_grad():
torch_layer = torch.nn.LSTM(IS, HS, L)
# create in tinygrad
layer = LSTM(IS, HS, L, 0.0)
# copy weights
with torch.no_grad():
layer.cells[0].weights_ih.assign(Tensor(torch_layer.weight_ih_l0.numpy()))
layer.cells[0].weights_hh.assign(Tensor(torch_layer.weight_hh_l0.numpy()))
layer.cells[0].bias_ih.assign(Tensor(torch_layer.bias_ih_l0.numpy()))
layer.cells[0].bias_hh.assign(Tensor(torch_layer.bias_hh_l0.numpy()))
layer.cells[1].weights_ih.assign(Tensor(torch_layer.weight_ih_l1.numpy()))
layer.cells[1].weights_hh.assign(Tensor(torch_layer.weight_hh_l1.numpy()))
layer.cells[1].bias_ih.assign(Tensor(torch_layer.bias_ih_l1.numpy()))
layer.cells[1].bias_hh.assign(Tensor(torch_layer.bias_hh_l1.numpy()))
# test initial hidden
for _ in range(3):
x = Tensor.randn(SQ, BS, IS)
z, hc = layer(x, None)
torch_x = torch.tensor(x.numpy())
torch_z, torch_hc = torch_layer(torch_x)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
# test passing hidden
for _ in range(3):
x = Tensor.randn(SQ, BS, IS)
z, hc = layer(x, hc)
torch_x = torch.tensor(x.numpy())
torch_z, torch_hc = torch_layer(torch_x, torch_hc)
np.testing.assert_allclose(z.numpy(), torch_z.detach().numpy(), atol=5e-3, rtol=5e-3)
if __name__ == '__main__':
unittest.main()