You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
52 lines
1.9 KiB
52 lines
1.9 KiB
23 hours ago
|
# opt opinionatedly transforms an ast into an optimized ast using either heuristics or beam search
|
||
|
|
||
|
from tinygrad.codegen.opt.kernel import Kernel
|
||
|
from tinygrad.codegen.opt.heuristic import hand_coded_optimizations
|
||
|
from tinygrad.uop.ops import UOp, PatternMatcher, UPat, Ops, KernelInfo
|
||
|
from tinygrad.helpers import NOOPT, BEAM, USE_TC, getenv
|
||
|
from tinygrad.renderer import Renderer
|
||
|
from tinygrad.uop.spec import type_verify
|
||
|
|
||
|
def get_optimized_ast(ast:UOp, renderer:Renderer) -> UOp|None:
|
||
|
"""
|
||
|
Optimize an AST based on heuristics or BEAM search.
|
||
|
|
||
|
Args:
|
||
|
ast: The Ops.SINK rooted AST
|
||
|
renderer: The renderer used to generate the code
|
||
|
|
||
|
Returns:
|
||
|
The Ops.SINK rooted AST transformed to apply the opts and with a KernelInfo in the arg.
|
||
|
"""
|
||
|
|
||
|
# no shape, no opt
|
||
|
if ast.src[0].st is None: return None
|
||
|
new_arg = ast.arg
|
||
|
if new_arg is None:
|
||
|
k = Kernel(ast, opts=renderer)
|
||
|
if not NOOPT:
|
||
|
if not k.apply_tensor_cores(USE_TC.value): k.apply_opts(hand_coded_optimizations(k))
|
||
|
if BEAM >= 1:
|
||
|
from tinygrad.codegen.opt.search import beam_search, bufs_from_lin
|
||
|
kb = Kernel(ast, opts=renderer)
|
||
|
rawbufs = bufs_from_lin(kb, allocate=False)
|
||
|
k = beam_search(kb, rawbufs, BEAM.value, bool(getenv("BEAM_ESTIMATE", 1)))
|
||
|
new_arg = KernelInfo(opts_to_apply=tuple(k.applied_opts))
|
||
|
elif len(new_arg.applied_opts): return None
|
||
|
return Kernel(ast.replace(arg=None), opts=renderer).get_optimized_ast().replace(arg=new_arg)
|
||
|
|
||
|
pm_get_optimization = PatternMatcher([
|
||
|
(UPat(Ops.SINK, name="ast"), lambda ctx,ast: get_optimized_ast(ast, ctx)),
|
||
|
])
|
||
|
|
||
|
def apply_opt(ast:UOp, renderer:Renderer):
|
||
|
k = Kernel(ast, opts=renderer)
|
||
|
k.apply_opts(ast.arg.opts_to_apply)
|
||
|
ret = k.get_optimized_ast()
|
||
|
if __debug__: type_verify(list(ret.toposort()))
|
||
|
return ret
|
||
|
|
||
|
pm_do_optimize = PatternMatcher([
|
||
|
(UPat(Ops.SINK, name="ast"), lambda ctx,ast: apply_opt(ast, ctx) if ast.arg is not None and ast.arg.opts_to_apply is not None else None),
|
||
|
])
|