You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
3.9 KiB
115 lines
3.9 KiB
1 month ago
|
#!/usr/bin/env python
|
||
|
import numpy as np
|
||
|
import unittest
|
||
|
from tinygrad import Tensor, Device, dtypes
|
||
|
from tinygrad.engine.realize import run_schedule
|
||
|
from tinygrad.ops import Ops, UOp
|
||
|
from tinygrad.engine.schedule import create_schedule
|
||
|
|
||
|
class TestLazyBuffer(unittest.TestCase):
|
||
|
def test_fromcpu_shape_tracker(self):
|
||
|
def helper(a: np.ndarray):
|
||
|
print(a.shape, a.strides, a.flags.c_contiguous)
|
||
|
b = Tensor(a).lazydata
|
||
|
#assert b.st.contiguous == a.flags.c_contiguous
|
||
|
assert b.st.shape == a.shape
|
||
|
np.testing.assert_equal(a, Tensor(b).numpy())
|
||
|
|
||
|
for ndims in range(1, 4):
|
||
|
a = np.random.randn(*(4,)*ndims).astype(np.float32)
|
||
|
for stride in [-2, 1, 2]:
|
||
|
for start in [0, 1]:
|
||
|
helper(a[(slice(start, None, stride),)*ndims])
|
||
|
|
||
|
def test_shuffle_pad_ops_cmpeq(self):
|
||
|
y = Tensor([1]).cat(Tensor([1]) == 0).numpy()
|
||
|
z = Tensor([1, 0]).numpy()
|
||
|
np.testing.assert_allclose(y, z)
|
||
|
|
||
|
def test_shuffle_pad_ops_div(self):
|
||
|
y = Tensor([1]).cat(Tensor([1]).div(Tensor([2.0]))).numpy()
|
||
|
z = Tensor([1, 0.5]).numpy()
|
||
|
np.testing.assert_allclose(y, z)
|
||
|
|
||
|
def test_shuffle_pad_ops_log(self):
|
||
|
y = Tensor([1]).cat(Tensor([1]).log()).numpy()
|
||
|
z = Tensor([1, 0]).numpy()
|
||
|
np.testing.assert_allclose(y, z)
|
||
|
|
||
|
def test_shuffle_pad_ops_exp(self):
|
||
|
y = Tensor([1]).cat(Tensor([1]).exp()).numpy()
|
||
|
z = Tensor([1, np.e]).numpy()
|
||
|
np.testing.assert_allclose(y, z)
|
||
|
|
||
|
def test_device_0_is_the_same_device(self):
|
||
|
a = Tensor([1, 2, 3], f"{Device.DEFAULT}")
|
||
|
b = Tensor([1, 2, 3], f"{Device.DEFAULT}:0")
|
||
|
assert a.device == b.device
|
||
|
|
||
|
def test_shrink_const_into_zero(self):
|
||
|
# regression test to make sure the shapetracker is preserved
|
||
|
a = Tensor.zeros(4,4,4).shrink((None, (0,0), None))
|
||
|
b = Tensor.zeros(4,1,4)
|
||
|
c = a.cat(b, dim=1)
|
||
|
np.testing.assert_allclose(c.numpy(), np.concatenate((a.numpy(), b.numpy()), axis=1))
|
||
|
|
||
|
def test_shrink_const_then_cast(self):
|
||
|
# regression test to make sure the shapetracker is preserved
|
||
|
a = Tensor.zeros(4,4,4).shrink((None, (0,0), None)).cast(dtypes.int32)
|
||
|
b = Tensor.zeros(4,1,4)
|
||
|
c = a.cat(b, dim=1)
|
||
|
np.testing.assert_allclose(c.numpy(), np.concatenate((a.numpy(), b.numpy()), axis=1))
|
||
|
|
||
|
def test_const_dtype(self):
|
||
|
lb: UOp = Tensor([1], dtype=dtypes.int).lazydata
|
||
|
assert lb.const_like(1).const_arg == 1
|
||
|
assert type(lb.const_like(1).const_arg) is int
|
||
|
|
||
|
lb: UOp = Tensor([1], dtype=dtypes.float).lazydata
|
||
|
assert lb.const_like(1).const_arg == 1.0
|
||
|
assert type(lb.const_like(1).const_arg) is float
|
||
|
|
||
|
def test_forced_realized_alu(self):
|
||
|
a = Tensor.randn(2, 2).realize()
|
||
|
b = Tensor.randn(2, 2).realize()
|
||
|
add = (a+b).contiguous()
|
||
|
out = add+2
|
||
|
sched = create_schedule([out.lazydata])
|
||
|
self.assertEqual(len(sched), 2)
|
||
|
run_schedule(sched)
|
||
|
np.testing.assert_allclose(out.numpy(), a.numpy()+b.numpy()+2)
|
||
|
|
||
|
def test_forced_realized_metaop(self):
|
||
|
empty = Tensor.empty(1).contiguous()
|
||
|
sched = create_schedule([empty.lazydata])
|
||
|
self.assertEqual(len(sched), 1)
|
||
|
self.assertIs(sched[0].ast.op, Ops.EMPTY)
|
||
|
run_schedule(sched)
|
||
|
|
||
|
class TestReduceOp(unittest.TestCase):
|
||
|
def test_no_split_reduce_kernel(self):
|
||
|
a = Tensor.rand(4, 4).realize()
|
||
|
a = a.sum()
|
||
|
sched = create_schedule([a.lazydata])
|
||
|
assert len(sched) == 1
|
||
|
self.assertIs(sched[0].ast.src[0].src[2].op, Ops.REDUCE_AXIS)
|
||
|
|
||
|
def test_split_reduce_kernel_dim0(self):
|
||
|
a = Tensor.rand(256, 255).realize()
|
||
|
a = a.sum()
|
||
|
sched = create_schedule([a.lazydata])
|
||
|
assert len(sched) == 2
|
||
|
for s in sched:
|
||
|
self.assertIs(s.ast.src[0].src[2].op, Ops.REDUCE_AXIS)
|
||
|
|
||
|
def test_split_reduce_kernel_dim1(self):
|
||
|
a = Tensor.rand(255, 256).realize()
|
||
|
a = a.sum()
|
||
|
sched = create_schedule([a.lazydata])
|
||
|
assert len(sched) == 2
|
||
|
for s in sched:
|
||
|
self.assertIs(s.ast.src[0].src[2].op, Ops.REDUCE_AXIS)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|