openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

612 lines
21 KiB

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PARTIALLU_H
#define EIGEN_PARTIALLU_H
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
: traits<_MatrixType>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
typedef traits<_MatrixType> BaseTraits;
enum {
Flags = BaseTraits::Flags & RowMajorBit,
CoeffReadCost = Dynamic
};
};
template<typename T,typename Derived>
struct enable_if_ref;
// {
// typedef Derived type;
// };
template<typename T,typename Derived>
struct enable_if_ref<Ref<T>,Derived> {
typedef Derived type;
};
} // end namespace internal
/** \ingroup LU_Module
*
* \class PartialPivLU
*
* \brief LU decomposition of a matrix with partial pivoting, and related features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
* is a permutation matrix.
*
* Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
* matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
* does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
* matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
*
* The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
* by class FullPivLU.
*
* This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
* such as rank computation. If you need these features, use class FullPivLU.
*
* This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
* in the general case.
* On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
*
* The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
*/
template<typename _MatrixType> class PartialPivLU
: public SolverBase<PartialPivLU<_MatrixType> >
{
public:
typedef _MatrixType MatrixType;
typedef SolverBase<PartialPivLU> Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
// FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef typename MatrixType::PlainObject PlainObject;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via PartialPivLU::compute(const MatrixType&).
*/
PartialPivLU();
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa PartialPivLU()
*/
explicit PartialPivLU(Index size);
/** Constructor.
*
* \param matrix the matrix of which to compute the LU decomposition.
*
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class FullPivLU instead.
*/
template<typename InputType>
explicit PartialPivLU(const EigenBase<InputType>& matrix);
/** Constructor for \link InplaceDecomposition inplace decomposition \endlink
*
* \param matrix the matrix of which to compute the LU decomposition.
*
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class FullPivLU instead.
*/
template<typename InputType>
explicit PartialPivLU(EigenBase<InputType>& matrix);
template<typename InputType>
PartialPivLU& compute(const EigenBase<InputType>& matrix) {
m_lu = matrix.derived();
compute();
return *this;
}
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
* case, special care is needed, see the documentation of class FullPivLU).
*
* \sa matrixL(), matrixU()
*/
inline const MatrixType& matrixLU() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return m_lu;
}
/** \returns the permutation matrix P.
*/
inline const PermutationType& permutationP() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return m_p;
}
/** This method returns the solution x to the equation Ax=b, where A is the matrix of which
* *this is the LU decomposition.
*
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
* the only requirement in order for the equation to make sense is that
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
*
* \returns the solution.
*
* Example: \include PartialPivLU_solve.cpp
* Output: \verbinclude PartialPivLU_solve.out
*
* Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* \sa TriangularView::solve(), inverse(), computeInverse()
*/
// FIXME this is a copy-paste of the base-class member to add the isInitialized assertion.
template<typename Rhs>
inline const Solve<PartialPivLU, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Solve<PartialPivLU, Rhs>(*this, b.derived());
}
/** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
the LU decomposition.
*/
inline RealScalar rcond() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
*
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
* invertibility, use class FullPivLU instead.
*
* \sa MatrixBase::inverse(), LU::inverse()
*/
inline const Inverse<PartialPivLU> inverse() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Inverse<PartialPivLU>(*this);
}
/** \returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the LU decomposition has already been computed.
*
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
* optimized paths.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
*
* \sa MatrixBase::determinant()
*/
Scalar determinant() const;
MatrixType reconstructedMatrix() const;
inline Index rows() const { return m_lu.rows(); }
inline Index cols() const { return m_lu.cols(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const {
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
* So we proceed as follows:
* Step 1: compute c = Pb.
* Step 2: replace c by the solution x to Lx = c.
* Step 3: replace c by the solution x to Ux = c.
*/
eigen_assert(rhs.rows() == m_lu.rows());
// Step 1
dst = permutationP() * rhs;
// Step 2
m_lu.template triangularView<UnitLower>().solveInPlace(dst);
// Step 3
m_lu.template triangularView<Upper>().solveInPlace(dst);
}
template<bool Conjugate, typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const {
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
* So we proceed as follows:
* Step 1: compute c = Pb.
* Step 2: replace c by the solution x to Lx = c.
* Step 3: replace c by the solution x to Ux = c.
*/
eigen_assert(rhs.rows() == m_lu.cols());
if (Conjugate) {
// Step 1
dst = m_lu.template triangularView<Upper>().adjoint().solve(rhs);
// Step 2
m_lu.template triangularView<UnitLower>().adjoint().solveInPlace(dst);
} else {
// Step 1
dst = m_lu.template triangularView<Upper>().transpose().solve(rhs);
// Step 2
m_lu.template triangularView<UnitLower>().transpose().solveInPlace(dst);
}
// Step 3
dst = permutationP().transpose() * dst;
}
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
void compute();
MatrixType m_lu;
PermutationType m_p;
TranspositionType m_rowsTranspositions;
RealScalar m_l1_norm;
signed char m_det_p;
bool m_isInitialized;
};
template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU()
: m_lu(),
m_p(),
m_rowsTranspositions(),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU(Index size)
: m_lu(size, size),
m_p(size),
m_rowsTranspositions(size),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
: m_lu(matrix.rows(),matrix.cols()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
compute(matrix.derived());
}
template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
: m_lu(matrix.derived()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
compute();
}
namespace internal {
/** \internal This is the blocked version of fullpivlu_unblocked() */
template<typename Scalar, int StorageOrder, typename PivIndex>
struct partial_lu_impl
{
// FIXME add a stride to Map, so that the following mapping becomes easier,
// another option would be to create an expression being able to automatically
// warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
// a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
// and Block.
typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
typedef typename MatrixType::RealScalar RealScalar;
/** \internal performs the LU decomposition in-place of the matrix \a lu
* using an unblocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
*/
static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
{
typedef scalar_score_coeff_op<Scalar> Scoring;
typedef typename Scoring::result_type Score;
const Index rows = lu.rows();
const Index cols = lu.cols();
const Index size = (std::min)(rows,cols);
nb_transpositions = 0;
Index first_zero_pivot = -1;
for(Index k = 0; k < size; ++k)
{
Index rrows = rows-k-1;
Index rcols = cols-k-1;
Index row_of_biggest_in_col;
Score biggest_in_corner
= lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col);
row_of_biggest_in_col += k;
row_transpositions[k] = PivIndex(row_of_biggest_in_col);
if(biggest_in_corner != Score(0))
{
if(k != row_of_biggest_in_col)
{
lu.row(k).swap(lu.row(row_of_biggest_in_col));
++nb_transpositions;
}
// FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k)
// overflow but not the actual quotient?
lu.col(k).tail(rrows) /= lu.coeff(k,k);
}
else if(first_zero_pivot==-1)
{
// the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
// and continue the factorization such we still have A = PLU
first_zero_pivot = k;
}
if(k<rows-1)
lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols);
}
return first_zero_pivot;
}
/** \internal performs the LU decomposition in-place of the matrix represented
* by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
* recursive, blocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
*
* \note This very low level interface using pointers, etc. is to:
* 1 - reduce the number of instanciations to the strict minimum
* 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
*/
static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
{
MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
MatrixType lu(lu1,0,0,rows,cols);
const Index size = (std::min)(rows,cols);
// if the matrix is too small, no blocking:
if(size<=16)
{
return unblocked_lu(lu, row_transpositions, nb_transpositions);
}
// automatically adjust the number of subdivisions to the size
// of the matrix so that there is enough sub blocks:
Index blockSize;
{
blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
}
nb_transpositions = 0;
Index first_zero_pivot = -1;
for(Index k = 0; k < size; k+=blockSize)
{
Index bs = (std::min)(size-k,blockSize); // actual size of the block
Index trows = rows - k - bs; // trailing rows
Index tsize = size - k - bs; // trailing size
// partition the matrix:
// A00 | A01 | A02
// lu = A_0 | A_1 | A_2 = A10 | A11 | A12
// A20 | A21 | A22
BlockType A_0(lu,0,0,rows,k);
BlockType A_2(lu,0,k+bs,rows,tsize);
BlockType A11(lu,k,k,bs,bs);
BlockType A12(lu,k,k+bs,bs,tsize);
BlockType A21(lu,k+bs,k,trows,bs);
BlockType A22(lu,k+bs,k+bs,trows,tsize);
PivIndex nb_transpositions_in_panel;
// recursively call the blocked LU algorithm on [A11^T A21^T]^T
// with a very small blocking size:
Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
row_transpositions+k, nb_transpositions_in_panel, 16);
if(ret>=0 && first_zero_pivot==-1)
first_zero_pivot = k+ret;
nb_transpositions += nb_transpositions_in_panel;
// update permutations and apply them to A_0
for(Index i=k; i<k+bs; ++i)
{
Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k));
A_0.row(i).swap(A_0.row(piv));
}
if(trows)
{
// apply permutations to A_2
for(Index i=k;i<k+bs; ++i)
A_2.row(i).swap(A_2.row(row_transpositions[i]));
// A12 = A11^-1 A12
A11.template triangularView<UnitLower>().solveInPlace(A12);
A22.noalias() -= A21 * A12;
}
}
return first_zero_pivot;
}
};
/** \internal performs the LU decomposition with partial pivoting in-place.
*/
template<typename MatrixType, typename TranspositionType>
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions)
{
eigen_assert(lu.cols() == row_transpositions.size());
eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
partial_lu_impl
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::StorageIndex>
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}
} // end namespace internal
template<typename MatrixType>
void PartialPivLU<MatrixType>::compute()
{
check_template_parameters();
// the row permutation is stored as int indices, so just to be sure:
eigen_assert(m_lu.rows()<NumTraits<int>::highest());
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
const Index size = m_lu.rows();
m_rowsTranspositions.resize(size);
typename TranspositionType::StorageIndex nb_transpositions;
internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;
m_p = m_rowsTranspositions;
m_isInitialized = true;
}
template<typename MatrixType>
typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Scalar(m_det_p) * m_lu.diagonal().prod();
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^{-1} L U.
* This function is provided for debug purpose. */
template<typename MatrixType>
MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
// LU
MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
* m_lu.template triangularView<Upper>();
// P^{-1}(LU)
res = m_p.inverse() * res;
return res;
}
/***** Implementation details *****************************************************/
namespace internal {
/***** Implementation of inverse() *****************************************************/
template<typename DstXprType, typename MatrixType>
struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense>
{
typedef PartialPivLU<MatrixType> LuType;
typedef Inverse<LuType> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &)
{
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
} // end namespace internal
/******** MatrixBase methods *******/
/** \lu_module
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::partialPivLu() const
{
return PartialPivLU<PlainObject>(eval());
}
/** \lu_module
*
* Synonym of partialPivLu().
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::lu() const
{
return PartialPivLU<PlainObject>(eval());
}
} // end namespace Eigen
#endif // EIGEN_PARTIALLU_H