openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

124 lines
4.8 KiB

5 years ago
#!/usr/bin/env python3
# type: ignore
5 years ago
'''
System tools like top/htop can only show current cpu usage values, so I write this script to do statistics jobs.
Features:
Use psutil library to sample cpu usage(avergage for all cores) of openpilot processes, at a rate of 5 samples/sec.
5 years ago
Do cpu usage statistics periodically, 5 seconds as a cycle.
Caculate the average cpu usage within this cycle.
Caculate minumium/maximium/accumulated_average cpu usage as long term inspections.
Monitor multiple processes simuteneously.
Sample usage:
root@localhost:/data/openpilot$ python selfdrive/debug/cpu_usage_stat.py boardd,ubloxd
('Add monitored proc:', './boardd')
('Add monitored proc:', 'python locationd/ubloxd.py')
boardd: 1.96%, min: 1.96%, max: 1.96%, acc: 1.96%
ubloxd.py: 0.39%, min: 0.39%, max: 0.39%, acc: 0.39%
'''
import psutil
import time
import os
import sys
import numpy as np
import argparse
import re
from collections import defaultdict
from selfdrive.manager.process_config import managed_processes
5 years ago
# Do statistics every 5 seconds
PRINT_INTERVAL = 5
SLEEP_INTERVAL = 0.2
monitored_proc_names = [
# android procs
'SurfaceFlinger', 'sensors.qcom'
] + list(managed_processes.keys())
5 years ago
cpu_time_names = ['user', 'system', 'children_user', 'children_system']
timer = getattr(time, 'monotonic', time.time)
5 years ago
def get_arg_parser():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
5 years ago
parser.add_argument("proc_names", nargs="?", default='',
help="Process names to be monitored, comma seperated")
parser.add_argument("--list_all", action='store_true',
help="Show all running processes' cmdline")
parser.add_argument("--detailed_times", action='store_true',
help="show cpu time details (split by user, system, child user, child system)")
return parser
if __name__ == "__main__":
args = get_arg_parser().parse_args(sys.argv[1:])
if args.list_all:
for p in psutil.process_iter():
print('cmdline', p.cmdline(), 'name', p.name())
sys.exit(0)
if len(args.proc_names) > 0:
monitored_proc_names = args.proc_names.split(',')
monitored_procs = []
stats = {}
for p in psutil.process_iter():
if p == psutil.Process():
continue
matched = any([l for l in p.cmdline() if any([pn for pn in monitored_proc_names if re.match(r'.*{}.*'.format(pn), l, re.M | re.I)])])
if matched:
k = ' '.join(p.cmdline())
print('Add monitored proc:', k)
stats[k] = {'cpu_samples': defaultdict(list), 'min': defaultdict(lambda: None), 'max': defaultdict(lambda: None),
'avg': defaultdict(lambda: 0.0), 'last_cpu_times': None, 'last_sys_time': None}
5 years ago
stats[k]['last_sys_time'] = timer()
stats[k]['last_cpu_times'] = p.cpu_times()
monitored_procs.append(p)
i = 0
interval_int = int(PRINT_INTERVAL / SLEEP_INTERVAL)
while True:
for p in monitored_procs:
k = ' '.join(p.cmdline())
cur_sys_time = timer()
cur_cpu_times = p.cpu_times()
cpu_times = np.subtract(cur_cpu_times, stats[k]['last_cpu_times']) / (cur_sys_time - stats[k]['last_sys_time'])
stats[k]['last_sys_time'] = cur_sys_time
stats[k]['last_cpu_times'] = cur_cpu_times
cpu_percent = 0
for num, name in enumerate(cpu_time_names):
stats[k]['cpu_samples'][name].append(cpu_times[num])
cpu_percent += cpu_times[num]
stats[k]['cpu_samples']['total'].append(cpu_percent)
time.sleep(SLEEP_INTERVAL)
i += 1
if i % interval_int == 0:
l = []
for k, stat in stats.items():
if len(stat['cpu_samples']) <= 0:
continue
for name, samples in stat['cpu_samples'].items():
samples = np.array(samples)
avg = samples.mean()
c = samples.size
min_cpu = np.amin(samples)
max_cpu = np.amax(samples)
if stat['min'][name] is None or min_cpu < stat['min'][name]:
stat['min'][name] = min_cpu
if stat['max'][name] is None or max_cpu > stat['max'][name]:
stat['max'][name] = max_cpu
stat['avg'][name] = (stat['avg'][name] * (i - c) + avg * c) / (i)
stat['cpu_samples'][name] = []
msg = 'avg: {1:.2%}, min: {2:.2%}, max: {3:.2%} {0}'.format(os.path.basename(k), stat['avg']['total'], stat['min']['total'], stat['max']['total'])
if args.detailed_times:
for stat_type in ['avg', 'min', 'max']:
msg += '\n {}: {}'.format(stat_type, [name + ':' + str(round(stat[stat_type][name]*100, 2)) for name in cpu_time_names])
l.append((os.path.basename(k), stat['avg']['total'], msg))
l.sort(key=lambda x: -x[1])
5 years ago
for x in l:
print(x[2])
print('avg sum: {0:.2%} over {1} samples {2} seconds\n'.format(
sum([stat['avg']['total'] for k, stat in stats.items()]), i, i * SLEEP_INTERVAL
))