openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

221 lines
7.4 KiB

4 months ago
#!/usr/bin/env python3
import numpy as np
from collections import deque
from skimage.registration._masked_phase_cross_correlation import cross_correlate_masked
4 months ago
import cereal.messaging as messaging
2 months ago
from cereal import car, log
2 months ago
from cereal.services import SERVICE_LIST
4 months ago
from openpilot.common.params import Params
2 months ago
from openpilot.common.realtime import config_realtime_process, DT_CTRL
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
4 months ago
MIN_LAG_VEL = 20.0
4 months ago
MAX_SANE_LAG = 3.0
MIN_ABS_YAW_RATE_DEG = 1
3 months ago
MOVING_CORR_WINDOW = 300.0
MIN_OKAY_WINDOW = 25.0
MIN_NCC = 0.95
2 months ago
class Points:
def __init__(self, num_points):
self.times = deque(maxlen=num_points)
self.okay = deque(maxlen=num_points)
self.desired = deque(maxlen=num_points)
self.actual = deque(maxlen=num_points)
2 months ago
@property
def num_points(self):
return len(self.desired)
4 months ago
2 months ago
@property
def num_okay(self):
return np.count_nonzero(self.okay)
4 months ago
2 months ago
def update(self, t, desired, actual, okay):
self.times.append(t)
self.okay.append(okay)
self.desired.append(desired)
self.actual.append(actual)
def get(self):
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
class BlockAverage:
2 months ago
def __init__(self, num_blocks, block_size, valid_blocks, initial_value):
2 months ago
self.num_blocks = num_blocks
self.block_size = block_size
self.block_idx = 0
self.idx = 0
self.values = np.tile(initial_value, (num_blocks, 1))
2 months ago
self.valid_blocks = valid_blocks
2 months ago
def update(self, value):
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size
self.idx = (self.idx + 1) % self.block_size
if self.idx == 0:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
def get(self):
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
if not valid_block_idx:
return None
return np.mean(self.values[valid_block_idx], axis=0)
class LagEstimator:
2 months ago
def __init__(self, CP, dt, block_count=10, block_size=100, window_sec=300.0, okay_window_sec=30.0, min_vego=15, min_yr=np.radians(1), min_ncc=0.95):
4 months ago
self.dt = dt
2 months ago
self.window_sec = window_sec
self.okay_window_sec = okay_window_sec
2 months ago
self.initial_lag = CP.steerActuatorDelay + 0.2
self.block_size = block_size
self.block_count = block_count
2 months ago
self.min_vego = min_vego
self.min_yr = min_yr
self.min_ncc = min_ncc
self.t = 0
self.lat_active = False
self.steering_pressed = False
self.desired_curvature = 0
self.v_ego = 0
self.yaw_rate = 0
4 months ago
self.calibrator = PoseCalibrator()
2 months ago
self.reset(self.initial_lag, 0)
def reset(self, initial_lag, valid_blocks):
window_len = int(self.window_sec / self.dt)
self.points = Points(window_len)
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
self.lag = initial_lag
2 months ago
def get_msg(self, valid):
msg = messaging.new_message('liveActuatorDelay')
4 months ago
2 months ago
msg.valid = valid
4 months ago
2 months ago
liveDelay = msg.liveActuatorDelay
liveDelay.steerActuatorDelay = self.lag
liveDelay.isEstimated = self.block_avg.valid_blocks > 0
2 months ago
liveDelay.validBlocks = self.block_avg.valid_blocks
2 months ago
liveDelay.points = self.block_avg.values.tolist()
2 months ago
return msg
def handle_log(self, t, which, msg):
4 months ago
if which == "carControl":
2 months ago
self.lat_active = msg.latActive
4 months ago
elif which == "carState":
2 months ago
self.steering_pressed = msg.steeringPressed
self.v_ego = msg.vEgo
4 months ago
elif which == "controlsState":
2 months ago
self.desired_curvature = msg.desiredCurvature
elif which == "liveCalibration":
self.calibrator.feed_live_calib(msg)
elif which == "livePose":
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
2 months ago
self.yaw_rate = calibrated_pose.angular_velocity.z
self.t = t
2 months ago
def points_valid(self):
2 months ago
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
4 months ago
2 months ago
def update_points(self):
okay = self.lat_active and not self.steering_pressed and self.v_ego > self.min_vego and np.abs(self.yaw_rate) >= self.min_yr
la_desired = self.desired_curvature * self.v_ego * self.v_ego
la_actual_pose = self.yaw_rate * self.v_ego
4 months ago
2 months ago
self.points.update(self.t, la_desired, la_actual_pose, okay)
2 months ago
if not okay or not self.points_valid():
2 months ago
return
4 months ago
2 months ago
times, desired, actual, okay = self.points.get()
times_interp = np.arange(times[-1] - self.window_sec, times[-1], DT_CTRL)
desired_interp = np.interp(times_interp, times, desired)
actual_interp = np.interp(times_interp, times, actual)
okay_interp = np.interp(times_interp, times, okay).astype(bool)
delay, corr = self.actuator_delay(desired_interp, actual_interp, okay_interp, DT_CTRL)
if corr < self.min_ncc:
return
2 months ago
self.block_avg.update(delay)
if (new_lag := self.block_avg.get()) is not None:
2 months ago
self.lag = float(new_lag.item())
4 months ago
def correlation_lags(self, sig_len, dt):
return np.arange(0, sig_len) * dt
2 months ago
def actuator_delay(self, expected_sig, actual_sig, is_okay, dt, max_lag=1.):
# masked (gated) normalized cross-correlation
# normalized, can be used for anything, like comparsion
assert len(expected_sig) == len(actual_sig)
xcorr = cross_correlate_masked(actual_sig, expected_sig, is_okay, is_okay, axes=tuple(range(actual_sig.ndim)),)
lags = self.correlation_lags(len(expected_sig), dt)
n_frames_max_delay = int(max_lag / dt)
xcorr = xcorr[len(expected_sig) - 1: len(expected_sig) - 1 + n_frames_max_delay]
lags = lags[:n_frames_max_delay]
max_corr_index = np.argmax(xcorr)
lag, corr = lags[max_corr_index], xcorr[max_corr_index]
return lag, corr
4 months ago
def main():
config_realtime_process([0, 1, 2, 3], 5)
pm = messaging.PubMaster(['liveActuatorDelay', 'alertDebug'])
2 months ago
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carControl', 'carState', 'controlsState'], poll='livePose')
4 months ago
params = Params()
CP = messaging.log_from_bytes(params.get("CarParams", block=True), car.CarParams)
2 months ago
estimator = LagEstimator(CP, 1. / SERVICE_LIST['livePose'].frequency)
4 months ago
2 months ago
lag_params = params.get("LiveLag")
2 months ago
if lag_params:
try:
with log.Event.from_bytes(lag_params) as msg:
lag_init = msg.liveActuatorDelay.steerActuatorDelay
valid_blocks = msg.liveActuatorDelay.validBlocks
estimator.reset(lag_init, valid_blocks)
except Exception:
print("Error reading cached LagParams")
4 months ago
while True:
sm.update()
if sm.all_checks():
3 months ago
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
4 months ago
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
estimator.handle_log(t, which, sm[which])
2 months ago
estimator.update_points()
4 months ago
if sm.frame % 25 == 0:
2 months ago
msg = estimator.get_msg(sm.all_checks())
4 months ago
alert_msg = messaging.new_message('alertDebug')
4 months ago
alert_msg.alertDebug.alertText1 = f"Lag estimate (fixed: {CP.steerActuatorDelay:.2f} s)"
3 months ago
alert_msg.alertDebug.alertText2 = f"{msg.liveActuatorDelay.steerActuatorDelay:.2f} s ({msg.liveActuatorDelay.isEstimated})"
4 months ago
pm.send('liveActuatorDelay', msg)
pm.send('alertDebug', alert_msg)
2 months ago
if msg.liveActuatorDelay.isEstimated: # TODO maybe to often once estimated
2 months ago
params.put_nonblocking("LiveLag", msg.to_bytes())
2 months ago
4 months ago
if __name__ == "__main__":
main()