openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

36 lines
1.6 KiB

# eval for tinygrad.apps.llm
import pyarrow.parquet as pq
from tinygrad.helpers import fetch, colored
from tinygrad.apps.llm import Transformer, SimpleTokenizer, models
from tinygrad import Tensor
if __name__ == "__main__":
dat = fetch("https://huggingface.co/datasets/allenai/ai2_arc/resolve/main/ARC-Challenge/test-00000-of-00001.parquet")
table = pq.read_table(dat)
model, kv = Transformer.from_gguf(Tensor.from_url(models["1B"]), max_context=4096)
tok = SimpleTokenizer(kv["tokenizer.ggml.tokens"])
bos_id: int = kv['tokenizer.ggml.bos_token_id']
eos_id: int = kv['tokenizer.ggml.eos_token_id']
num_correct, num_answered = 0, 0
total_questions = len(table["question"])
for question, choices, answer in zip(table["question"], table["choices"], table["answerKey"]):
phrasing = f"Question: {question}\n\n" + \
'\n'.join([f"{k}) {v}" for k,v in zip(choices['label'], choices['text'])]) +\
"\n\nReply with the letter of the correct answer only."
try:
ids = [bos_id] + tok.role("user") + tok.encode(phrasing) + [eos_id] + tok.role("assistant") + tok.encode("Answer: ")
except RuntimeError:
# TODO: fix the tokenizer
pass
next_id = next(model.generate(ids))
correct, given = answer.as_py().strip(), tok.decode([next_id]).strip()
num_correct += correct == given
num_answered += 1
print(f"{num_answered:4d}/{total_questions:4d} "+\
f"Correct Answer: {correct} "+\
f"Given Answer: {colored(given, 'green' if correct==given else 'red')} "+\
f"Percent: {num_correct*100.0/num_answered:.2f}%")