openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

193 lines
7.1 KiB

#!/usr/bin/env python3
import os
from openpilot.system.hardware import TICI
if TICI:
from tinygrad.tensor import Tensor
from tinygrad.dtype import dtypes
from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address
os.environ['QCOM'] = '1'
else:
from openpilot.selfdrive.modeld.runners.ort_helpers import make_onnx_cpu_runner
import math
import time
import pickle
import ctypes
import numpy as np
from pathlib import Path
from setproctitle import setproctitle
from cereal import messaging
from cereal.messaging import PubMaster, SubMaster
from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
from openpilot.common.swaglog import cloudlog
from openpilot.common.realtime import config_realtime_process
from openpilot.common.transformations.model import dmonitoringmodel_intrinsics, DM_INPUT_SIZE
from openpilot.common.transformations.camera import _ar_ox_fisheye, _os_fisheye
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext, MonitoringModelFrame
from openpilot.selfdrive.modeld.parse_model_outputs import sigmoid
from openpilot.system import sentry
MODEL_WIDTH, MODEL_HEIGHT = DM_INPUT_SIZE
CALIB_LEN = 3
FEATURE_LEN = 512
OUTPUT_SIZE = 84 + FEATURE_LEN
PROCESS_NAME = "selfdrive.modeld.dmonitoringmodeld"
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
MODEL_PATH = Path(__file__).parent / 'models/dmonitoring_model.onnx'
MODEL_PKL_PATH = Path(__file__).parent / 'models/dmonitoring_model_tinygrad.pkl'
class DriverStateResult(ctypes.Structure):
_fields_ = [
("face_orientation", ctypes.c_float*3),
("face_position", ctypes.c_float*3),
("face_orientation_std", ctypes.c_float*3),
("face_position_std", ctypes.c_float*3),
("face_prob", ctypes.c_float),
("_unused_a", ctypes.c_float*8),
("left_eye_prob", ctypes.c_float),
("_unused_b", ctypes.c_float*8),
("right_eye_prob", ctypes.c_float),
("left_blink_prob", ctypes.c_float),
("right_blink_prob", ctypes.c_float),
("sunglasses_prob", ctypes.c_float),
("occluded_prob", ctypes.c_float),
("ready_prob", ctypes.c_float*4),
("not_ready_prob", ctypes.c_float*2)]
class DMonitoringModelResult(ctypes.Structure):
_fields_ = [
("driver_state_lhd", DriverStateResult),
("driver_state_rhd", DriverStateResult),
("poor_vision_prob", ctypes.c_float),
("wheel_on_right_prob", ctypes.c_float),
("features", ctypes.c_float*FEATURE_LEN)]
class ModelState:
inputs: dict[str, np.ndarray]
output: np.ndarray
def __init__(self, cl_ctx):
assert ctypes.sizeof(DMonitoringModelResult) == OUTPUT_SIZE * ctypes.sizeof(ctypes.c_float)
self.frame = MonitoringModelFrame(cl_ctx)
self.numpy_inputs = {
'calib': np.zeros((1, CALIB_LEN), dtype=np.float32),
}
if TICI:
self.tensor_inputs = {k: Tensor(v, device='NPY').realize() for k,v in self.numpy_inputs.items()}
with open(MODEL_PKL_PATH, "rb") as f:
self.model_run = pickle.load(f)
else:
self.onnx_cpu_runner = make_onnx_cpu_runner(MODEL_PATH)
def run(self, buf: VisionBuf, calib: np.ndarray, transform: np.ndarray) -> tuple[np.ndarray, float]:
self.numpy_inputs['calib'][0,:] = calib
t1 = time.perf_counter()
input_img_cl = self.frame.prepare(buf, transform.flatten())
if TICI:
# The imgs tensors are backed by opencl memory, only need init once
if 'input_img' not in self.tensor_inputs:
self.tensor_inputs['input_img'] = qcom_tensor_from_opencl_address(input_img_cl.mem_address, (1, MODEL_WIDTH*MODEL_HEIGHT), dtype=dtypes.uint8)
else:
self.numpy_inputs['input_img'] = self.frame.buffer_from_cl(input_img_cl).reshape((1, MODEL_WIDTH*MODEL_HEIGHT))
if TICI:
output = self.model_run(**self.tensor_inputs).numpy().flatten()
else:
output = self.onnx_cpu_runner.run(None, self.numpy_inputs)[0].flatten()
t2 = time.perf_counter()
return output, t2 - t1
def fill_driver_state(msg, ds_result: DriverStateResult):
msg.faceOrientation = list(ds_result.face_orientation)
msg.faceOrientationStd = [math.exp(x) for x in ds_result.face_orientation_std]
msg.facePosition = list(ds_result.face_position[:2])
msg.facePositionStd = [math.exp(x) for x in ds_result.face_position_std[:2]]
msg.faceProb = float(sigmoid(ds_result.face_prob))
msg.leftEyeProb = float(sigmoid(ds_result.left_eye_prob))
msg.rightEyeProb = float(sigmoid(ds_result.right_eye_prob))
msg.leftBlinkProb = float(sigmoid(ds_result.left_blink_prob))
msg.rightBlinkProb = float(sigmoid(ds_result.right_blink_prob))
msg.sunglassesProb = float(sigmoid(ds_result.sunglasses_prob))
msg.occludedProb = float(sigmoid(ds_result.occluded_prob))
msg.readyProb = [float(sigmoid(x)) for x in ds_result.ready_prob]
msg.notReadyProb = [float(sigmoid(x)) for x in ds_result.not_ready_prob]
def get_driverstate_packet(model_output: np.ndarray, frame_id: int, location_ts: int, execution_time: float, gpu_execution_time: float):
model_result = ctypes.cast(model_output.ctypes.data, ctypes.POINTER(DMonitoringModelResult)).contents
msg = messaging.new_message('driverStateV2', valid=True)
ds = msg.driverStateV2
ds.frameId = frame_id
ds.modelExecutionTime = execution_time
ds.gpuExecutionTime = gpu_execution_time
ds.poorVisionProb = float(sigmoid(model_result.poor_vision_prob))
ds.wheelOnRightProb = float(sigmoid(model_result.wheel_on_right_prob))
ds.rawPredictions = model_output.tobytes() if SEND_RAW_PRED else b''
fill_driver_state(ds.leftDriverData, model_result.driver_state_lhd)
fill_driver_state(ds.rightDriverData, model_result.driver_state_rhd)
return msg
def main():
setproctitle(PROCESS_NAME)
config_realtime_process([0, 1, 2, 3], 5)
sentry.set_tag("daemon", PROCESS_NAME)
cloudlog.bind(daemon=PROCESS_NAME)
cl_context = CLContext()
model = ModelState(cl_context)
cloudlog.warning("models loaded, dmonitoringmodeld starting")
cloudlog.warning("connecting to driver stream")
vipc_client = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_DRIVER, True, cl_context)
while not vipc_client.connect(False):
time.sleep(0.1)
assert vipc_client.is_connected()
cloudlog.warning(f"connected with buffer size: {vipc_client.buffer_len}")
sm = SubMaster(["liveCalibration"])
pm = PubMaster(["driverStateV2"])
calib = np.zeros(CALIB_LEN, dtype=np.float32)
model_transform = None
while True:
buf = vipc_client.recv()
if buf is None:
continue
if model_transform is None:
cam = _os_fisheye if buf.width == _os_fisheye.width else _ar_ox_fisheye
model_transform = np.linalg.inv(np.dot(dmonitoringmodel_intrinsics, np.linalg.inv(cam.intrinsics))).astype(np.float32)
sm.update(0)
if sm.updated["liveCalibration"]:
calib[:] = np.array(sm["liveCalibration"].rpyCalib)
t1 = time.perf_counter()
model_output, gpu_execution_time = model.run(buf, calib, model_transform)
t2 = time.perf_counter()
pm.send("driverStateV2", get_driverstate_packet(model_output, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, gpu_execution_time))
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
cloudlog.warning(f"child {PROCESS_NAME} got SIGINT")
except Exception:
sentry.capture_exception()
raise