You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					84 lines
				
				2.0 KiB
			
		
		
			
		
	
	
					84 lines
				
				2.0 KiB
			| 
											6 years ago
										 | import numpy as np
 | ||
|  | import matplotlib.pyplot as plt
 | ||
|  | from mpl_toolkits.mplot3d import Axes3D
 | ||
|  | from matplotlib import cm
 | ||
|  | from matplotlib.ticker import LinearLocator, FormatStrFormatter
 | ||
|  | from scipy.optimize import minimize
 | ||
|  | 
 | ||
|  | a = -9.81
 | ||
|  | dt = 0.1
 | ||
|  | 
 | ||
|  | r = 2.0
 | ||
|  | 
 | ||
|  | v_ls = []
 | ||
|  | x_ls = []
 | ||
|  | v_egos = []
 | ||
|  | 
 | ||
|  | for vv_ego in np.arange(35, 40, 1):
 | ||
|  |     for vv_l in np.arange(35, 40, 1):
 | ||
|  |         for xx_l in np.arange(0, 100, 1.0):
 | ||
|  |             x_l = xx_l
 | ||
|  |             v_l = vv_l
 | ||
|  |             v_ego = vv_ego
 | ||
|  |             x_ego = 0.0
 | ||
|  | 
 | ||
|  |             ttc = None
 | ||
|  |             for t in np.arange(0, 100, dt):
 | ||
|  |                 x_l += v_l * dt
 | ||
|  |                 v_l += a * dt
 | ||
|  |                 v_l = max(v_l, 0.0)
 | ||
|  | 
 | ||
|  |                 x_ego += v_ego * dt
 | ||
|  |                 if t > r:
 | ||
|  |                     v_ego += a * dt
 | ||
|  |                     v_ego = max(v_ego, 0.0)
 | ||
|  | 
 | ||
|  |                 if x_ego >= x_l:
 | ||
|  |                     ttc = t
 | ||
|  |                     break
 | ||
|  | 
 | ||
|  |             if ttc is None:
 | ||
|  |                 if xx_l < 0.1:
 | ||
|  |                     break
 | ||
|  | 
 | ||
|  |                 v_ls.append(vv_l)
 | ||
|  |                 x_ls.append(xx_l)
 | ||
|  |                 v_egos.append(vv_ego)
 | ||
|  |                 break
 | ||
|  | 
 | ||
|  | 
 | ||
|  | def eval_f(x, v_ego, v_l):
 | ||
|  |     est = x[0] * v_l + x[1] * v_l**2 \
 | ||
|  |             + x[2] * v_ego + x[3] * v_ego**2
 | ||
|  |     return est
 | ||
|  | 
 | ||
|  | def f(x):
 | ||
|  |     r = 0.0
 | ||
|  |     for v_ego, v_l, x_l in zip(v_egos, v_ls, x_ls):
 | ||
|  |         est = eval_f(x, v_ego, v_l)
 | ||
|  |         r += (x_l - est)**2
 | ||
|  | 
 | ||
|  |     return r
 | ||
|  | 
 | ||
|  | x0 = [0.5, 0.5, 0.5, 0.5]
 | ||
|  | res = minimize(f, x0, method='Nelder-Mead')
 | ||
|  | print(res)
 | ||
|  | print(res.x)
 | ||
|  | 
 | ||
|  | g = 9.81
 | ||
|  | t_r = 1.8
 | ||
|  | 
 | ||
|  | estimated = [4.0 + eval_f(res.x, v_ego, v_l) for (v_ego, v_l) in zip(v_egos, v_ls)]
 | ||
|  | new_formula = [4.0 + v_ego * t_r - (v_l - v_ego) * t_r + v_ego**2/(2*g) - v_l**2 / (2*g)  for (v_ego, v_l) in zip(v_egos, v_ls)]
 | ||
|  | 
 | ||
|  | fig = plt.figure()
 | ||
|  | ax = fig.add_subplot(111, projection='3d')
 | ||
|  | surf = ax.scatter(v_egos, v_ls, x_ls, s=1)
 | ||
|  | # surf = ax.scatter(v_egos, v_ls, estimated, s=1)
 | ||
|  | surf = ax.scatter(v_egos, v_ls, new_formula, s=1)
 | ||
|  | 
 | ||
|  | ax.set_xlabel('v ego')
 | ||
|  | ax.set_ylabel('v lead')
 | ||
|  | ax.set_zlabel('min distance')
 | ||
|  | plt.show()
 |