openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

145 lines
4.5 KiB

#define _USE_MATH_DEFINES
#include <iostream>
#include <cmath>
#include <eigen3/Eigen/Dense>
#include "common/transformations/orientation.hpp"
#include "common/transformations/coordinates.hpp"
Eigen::Quaterniond ensure_unique(Eigen::Quaterniond quat){
if (quat.w() > 0){
return quat;
} else {
return Eigen::Quaterniond(-quat.w(), -quat.x(), -quat.y(), -quat.z());
}
}
Eigen::Quaterniond euler2quat(Eigen::Vector3d euler){
Eigen::Quaterniond q;
q = Eigen::AngleAxisd(euler(2), Eigen::Vector3d::UnitZ())
* Eigen::AngleAxisd(euler(1), Eigen::Vector3d::UnitY())
* Eigen::AngleAxisd(euler(0), Eigen::Vector3d::UnitX());
return ensure_unique(q);
}
Eigen::Vector3d quat2euler(Eigen::Quaterniond quat){
// TODO: switch to eigen implementation if the range of the Euler angles doesn't matter anymore
// Eigen::Vector3d euler = quat.toRotationMatrix().eulerAngles(2, 1, 0);
// return {euler(2), euler(1), euler(0)};
double gamma = atan2(2 * (quat.w() * quat.x() + quat.y() * quat.z()), 1 - 2 * (quat.x()*quat.x() + quat.y()*quat.y()));
double asin_arg_clipped = std::clamp(2 * (quat.w() * quat.y() - quat.z() * quat.x()), -1.0, 1.0);
double theta = asin(asin_arg_clipped);
double psi = atan2(2 * (quat.w() * quat.z() + quat.x() * quat.y()), 1 - 2 * (quat.y()*quat.y() + quat.z()*quat.z()));
return {gamma, theta, psi};
}
Eigen::Matrix3d quat2rot(Eigen::Quaterniond quat){
return quat.toRotationMatrix();
}
Eigen::Quaterniond rot2quat(const Eigen::Matrix3d &rot){
return ensure_unique(Eigen::Quaterniond(rot));
}
Eigen::Matrix3d euler2rot(Eigen::Vector3d euler){
return quat2rot(euler2quat(euler));
}
Eigen::Vector3d rot2euler(const Eigen::Matrix3d &rot){
return quat2euler(rot2quat(rot));
}
Eigen::Matrix3d rot_matrix(double roll, double pitch, double yaw){
return euler2rot({roll, pitch, yaw});
}
Eigen::Matrix3d rot(Eigen::Vector3d axis, double angle){
Eigen::Quaterniond q;
q = Eigen::AngleAxisd(angle, axis);
return q.toRotationMatrix();
}
Eigen::Vector3d ecef_euler_from_ned(ECEF ecef_init, Eigen::Vector3d ned_pose) {
/*
Using Rotations to Build Aerospace Coordinate Systems
Don Koks
https://apps.dtic.mil/dtic/tr/fulltext/u2/a484864.pdf
*/
LocalCoord converter = LocalCoord(ecef_init);
Eigen::Vector3d zero = ecef_init.to_vector();
Eigen::Vector3d x0 = converter.ned2ecef({1, 0, 0}).to_vector() - zero;
Eigen::Vector3d y0 = converter.ned2ecef({0, 1, 0}).to_vector() - zero;
Eigen::Vector3d z0 = converter.ned2ecef({0, 0, 1}).to_vector() - zero;
Eigen::Vector3d x1 = rot(z0, ned_pose(2)) * x0;
Eigen::Vector3d y1 = rot(z0, ned_pose(2)) * y0;
Eigen::Vector3d z1 = rot(z0, ned_pose(2)) * z0;
Eigen::Vector3d x2 = rot(y1, ned_pose(1)) * x1;
Eigen::Vector3d y2 = rot(y1, ned_pose(1)) * y1;
Eigen::Vector3d z2 = rot(y1, ned_pose(1)) * z1;
Eigen::Vector3d x3 = rot(x2, ned_pose(0)) * x2;
Eigen::Vector3d y3 = rot(x2, ned_pose(0)) * y2;
x0 = Eigen::Vector3d(1, 0, 0);
y0 = Eigen::Vector3d(0, 1, 0);
z0 = Eigen::Vector3d(0, 0, 1);
double psi = atan2(x3.dot(y0), x3.dot(x0));
double theta = atan2(-x3.dot(z0), sqrt(pow(x3.dot(x0), 2) + pow(x3.dot(y0), 2)));
y2 = rot(z0, psi) * y0;
z2 = rot(y2, theta) * z0;
double phi = atan2(y3.dot(z2), y3.dot(y2));
return {phi, theta, psi};
}
Eigen::Vector3d ned_euler_from_ecef(ECEF ecef_init, Eigen::Vector3d ecef_pose){
/*
Using Rotations to Build Aerospace Coordinate Systems
Don Koks
https://apps.dtic.mil/dtic/tr/fulltext/u2/a484864.pdf
*/
LocalCoord converter = LocalCoord(ecef_init);
Eigen::Vector3d x0 = Eigen::Vector3d(1, 0, 0);
Eigen::Vector3d y0 = Eigen::Vector3d(0, 1, 0);
Eigen::Vector3d z0 = Eigen::Vector3d(0, 0, 1);
Eigen::Vector3d x1 = rot(z0, ecef_pose(2)) * x0;
Eigen::Vector3d y1 = rot(z0, ecef_pose(2)) * y0;
Eigen::Vector3d z1 = rot(z0, ecef_pose(2)) * z0;
Eigen::Vector3d x2 = rot(y1, ecef_pose(1)) * x1;
Eigen::Vector3d y2 = rot(y1, ecef_pose(1)) * y1;
Eigen::Vector3d z2 = rot(y1, ecef_pose(1)) * z1;
Eigen::Vector3d x3 = rot(x2, ecef_pose(0)) * x2;
Eigen::Vector3d y3 = rot(x2, ecef_pose(0)) * y2;
Eigen::Vector3d zero = ecef_init.to_vector();
x0 = converter.ned2ecef({1, 0, 0}).to_vector() - zero;
y0 = converter.ned2ecef({0, 1, 0}).to_vector() - zero;
z0 = converter.ned2ecef({0, 0, 1}).to_vector() - zero;
double psi = atan2(x3.dot(y0), x3.dot(x0));
double theta = atan2(-x3.dot(z0), sqrt(pow(x3.dot(x0), 2) + pow(x3.dot(y0), 2)));
y2 = rot(z0, psi) * y0;
z2 = rot(y2, theta) * z0;
double phi = atan2(y3.dot(z2), y3.dot(y2));
return {phi, theta, psi};
}