openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

75 lines
2.7 KiB

import unittest, sys
import numpy as np
from tinygrad import Tensor, GlobalCounters, dtypes, Context, nn
from tinygrad.helpers import CI, Profiling, WINO
@unittest.skipIf(sys.platform.startswith("win"), "flaky on Windows")
class TestWinogradClose(unittest.TestCase):
def test_close(self):
inp = Tensor.rand(1, 16, 16, 16)
conv = nn.Conv2d(16, 16, 3)
conv(inp).realize() # warmup
GlobalCounters.reset()
print("non winograd")
with Context(WINO=0):
cmp = conv(inp).realize() # warmup
GlobalCounters.reset()
print("winograd")
with Context(WINO=1):
test = conv(inp).realize()
np.testing.assert_allclose(cmp.numpy(), test.numpy(), atol=1e-5)
@unittest.skipIf(sys.platform.startswith("win"), "flaky on Windows")
class TestWinograd(unittest.TestCase):
def setUp(self):
self.old = WINO.value
WINO.value = 1
def tearDown(self):
WINO.value = self.old
def test_profile(self):
x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize()
with Profiling(enabled=not CI, sort='time'):
Tensor.conv2d(x,w).realize()
def test_forward_kernels(self):
x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize()
out = Tensor.conv2d(x,w)
self.assertEqual(len(out.schedule()), 4)
def test_backward_kernels(self):
x,w = Tensor.empty(1,4,9,9,requires_grad=True).realize(), Tensor.empty(4,4,3,3,requires_grad=True).realize()
out = Tensor.conv2d(x,w, padding=1)
out.mean().backward()
backward_schedule = Tensor.schedule(x.grad, w.grad)
self.assertEqual(len(backward_schedule), 9)
def test_counters(self):
IC, OC, X, Y = 4,4,9,9
#OC, IC, X, Y = 512, 256, 8, 8
x,w = Tensor.rand(1,IC,Y,X).realize(), Tensor.rand(OC,IC,3,3).realize()
GlobalCounters.reset()
Tensor.conv2d(x,w).realize()
ops_wino, mem_wino = GlobalCounters.global_ops, GlobalCounters.global_mem
WINO.value = 0
GlobalCounters.reset()
Tensor.conv2d(x,w).realize()
ops_normal, mem_normal = GlobalCounters.global_ops, GlobalCounters.global_mem
ops_ratio, mem_ratio = ops_wino/ops_normal, mem_wino/mem_normal
print(f"ops: normal {ops_normal:9d} wino {ops_wino:9d} ratio {ops_ratio:.2f}")
print(f"mem: normal {mem_normal:9d} wino {mem_wino:9d} ratio {mem_ratio:.2f}")
self.assertLess(ops_ratio, 2.6) # TODO: there's issues with factorization now
self.assertLess(mem_ratio, 10)
def test_dtype(self):
IC, OC, X, Y = 4,4,9,9
x,w = Tensor.empty(1,IC,Y,X), Tensor.empty(OC,IC,3,3)
self.assertEqual(Tensor.conv2d(x,w).dtype, dtypes.default_float)
x,w = Tensor.empty(1,IC,Y,X,dtype=dtypes.half), Tensor.empty(OC,IC,3,3,dtype=dtypes.half)
self.assertEqual(Tensor.conv2d(x,w).dtype, dtypes.half)
if __name__ == '__main__':
unittest.main(verbosity=2)