# include "selfdrive/modeld/models/driving.h"
# include <fcntl.h>
# include <unistd.h>
# include <cassert>
# include <cstring>
# include <eigen3/Eigen/Dense>
# include "selfdrive/common/clutil.h"
# include "selfdrive/common/params.h"
# include "selfdrive/common/timing.h"
constexpr float FCW_THRESHOLD_5MS2_HIGH = 0.15 ;
constexpr float FCW_THRESHOLD_5MS2_LOW = 0.05 ;
constexpr float FCW_THRESHOLD_3MS2 = 0.7 ;
float prev_brake_5ms2_probs [ 5 ] = { 0 , 0 , 0 , 0 , 0 } ;
float prev_brake_3ms2_probs [ 3 ] = { 0 , 0 , 0 } ;
// #define DUMP_YUV
template < class T , size_t size >
constexpr const kj : : ArrayPtr < const T > to_kj_array_ptr ( const std : : array < T , size > & arr ) {
return kj : : ArrayPtr ( arr . data ( ) , arr . size ( ) ) ;
}
void model_init ( ModelState * s , cl_device_id device_id , cl_context context ) {
s - > frame = new ModelFrame ( device_id , context ) ;
# ifdef USE_THNEED
s - > m = std : : make_unique < ThneedModel > ( " ../../models/supercombo.thneed " , & s - > output [ 0 ] , NET_OUTPUT_SIZE , USE_GPU_RUNTIME ) ;
# elif USE_ONNX_MODEL
s - > m = std : : make_unique < ONNXModel > ( " ../../models/supercombo.onnx " , & s - > output [ 0 ] , NET_OUTPUT_SIZE , USE_GPU_RUNTIME ) ;
# else
s - > m = std : : make_unique < SNPEModel > ( " ../../models/supercombo.dlc " , & s - > output [ 0 ] , NET_OUTPUT_SIZE , USE_GPU_RUNTIME ) ;
# endif
# ifdef TEMPORAL
s - > m - > addRecurrent ( & s - > output [ OUTPUT_SIZE ] , TEMPORAL_SIZE ) ;
# endif
# ifdef DESIRE
s - > m - > addDesire ( s - > pulse_desire , DESIRE_LEN ) ;
# endif
# ifdef TRAFFIC_CONVENTION
const int idx = Params ( ) . getBool ( " IsRHD " ) ? 1 : 0 ;
s - > traffic_convention [ idx ] = 1.0 ;
s - > m - > addTrafficConvention ( s - > traffic_convention , TRAFFIC_CONVENTION_LEN ) ;
# endif
}
ModelDataRaw model_eval_frame ( ModelState * s , cl_mem yuv_cl , int width , int height ,
const mat3 & transform , float * desire_in ) {
# ifdef DESIRE
if ( desire_in ! = NULL ) {
for ( int i = 1 ; i < DESIRE_LEN ; i + + ) {
// Model decides when action is completed
// so desire input is just a pulse triggered on rising edge
if ( desire_in [ i ] - s - > prev_desire [ i ] > .99 ) {
s - > pulse_desire [ i ] = desire_in [ i ] ;
} else {
s - > pulse_desire [ i ] = 0.0 ;
}
s - > prev_desire [ i ] = desire_in [ i ] ;
}
}
# endif
//for (int i = 0; i < NET_OUTPUT_SIZE; i++) { printf("%f ", s->output[i]); } printf("\n");
// if getInputBuf is not NULL, net_input_buf will be
auto net_input_buf = s - > frame - > prepare ( yuv_cl , width , height , transform , static_cast < cl_mem * > ( s - > m - > getInputBuf ( ) ) ) ;
s - > m - > execute ( net_input_buf , s - > frame - > buf_size ) ;
// net outputs
ModelDataRaw net_outputs {
. plans = ( ModelDataRawPlans * ) & s - > output [ PLAN_IDX ] ,
. lane_lines = ( ModelDataRawLaneLines * ) & s - > output [ LL_IDX ] ,
. road_edges = ( ModelDataRawRoadEdges * ) & s - > output [ RE_IDX ] ,
. leads = ( ModelDataRawLeads * ) & s - > output [ LEAD_IDX ] ,
. meta = & s - > output [ DESIRE_STATE_IDX ] ,
. pose = ( ModelDataRawPose * ) & s - > output [ POSE_IDX ] ,
} ;
return net_outputs ;
}
void model_free ( ModelState * s ) {
delete s - > frame ;
}
void fill_sigmoid ( const float * input , float * output , int len , int stride ) {
for ( int i = 0 ; i < len ; i + + ) {
output [ i ] = sigmoid ( input [ i * stride ] ) ;
}
}
void fill_lead ( cereal : : ModelDataV2 : : LeadDataV3 : : Builder lead , const ModelDataRawLeads & leads , int t_idx , float prob_t ) {
std : : array < float , LEAD_TRAJ_LEN > lead_t = { 0.0 , 2.0 , 4.0 , 6.0 , 8.0 , 10.0 } ;
auto best_prediction = leads . get_best_prediction ( t_idx ) ;
lead . setProb ( sigmoid ( leads . prob [ t_idx ] ) ) ;
lead . setProbTime ( prob_t ) ;
std : : array < float , LEAD_TRAJ_LEN > lead_x , lead_y , lead_v , lead_a ;
std : : array < float , LEAD_TRAJ_LEN > lead_x_std , lead_y_std , lead_v_std , lead_a_std ;
for ( int i = 0 ; i < LEAD_TRAJ_LEN ; i + + ) {
lead_x [ i ] = best_prediction . mean [ i ] . x ;
lead_y [ i ] = best_prediction . mean [ i ] . y ;
lead_v [ i ] = best_prediction . mean [ i ] . velocity ;
lead_a [ i ] = best_prediction . mean [ i ] . acceleration ;
lead_x_std [ i ] = exp ( best_prediction . std [ i ] . x ) ;
lead_y_std [ i ] = exp ( best_prediction . std [ i ] . y ) ;
lead_v_std [ i ] = exp ( best_prediction . std [ i ] . velocity ) ;
lead_a_std [ i ] = exp ( best_prediction . std [ i ] . acceleration ) ;
}
lead . setT ( to_kj_array_ptr ( lead_t ) ) ;
lead . setX ( to_kj_array_ptr ( lead_x ) ) ;
lead . setY ( to_kj_array_ptr ( lead_y ) ) ;
lead . setV ( to_kj_array_ptr ( lead_v ) ) ;
lead . setA ( to_kj_array_ptr ( lead_a ) ) ;
lead . setXStd ( to_kj_array_ptr ( lead_x_std ) ) ;
lead . setYStd ( to_kj_array_ptr ( lead_y_std ) ) ;
lead . setVStd ( to_kj_array_ptr ( lead_v_std ) ) ;
lead . setAStd ( to_kj_array_ptr ( lead_a_std ) ) ;
}
void fill_meta ( cereal : : ModelDataV2 : : MetaData : : Builder meta , const float * meta_data ) {
float desire_state_softmax [ DESIRE_LEN ] ;
float desire_pred_softmax [ 4 * DESIRE_LEN ] ;
softmax ( & meta_data [ 0 ] , desire_state_softmax , DESIRE_LEN ) ;
for ( int i = 0 ; i < 4 ; i + + ) {
softmax ( & meta_data [ DESIRE_LEN + OTHER_META_SIZE + i * DESIRE_LEN ] ,
& desire_pred_softmax [ i * DESIRE_LEN ] , DESIRE_LEN ) ;
}
float gas_disengage_sigmoid [ NUM_META_INTERVALS ] ;
float brake_disengage_sigmoid [ NUM_META_INTERVALS ] ;
float steer_override_sigmoid [ NUM_META_INTERVALS ] ;
float brake_3ms2_sigmoid [ NUM_META_INTERVALS ] ;
float brake_4ms2_sigmoid [ NUM_META_INTERVALS ] ;
float brake_5ms2_sigmoid [ NUM_META_INTERVALS ] ;
fill_sigmoid ( & meta_data [ DESIRE_LEN + 1 ] , gas_disengage_sigmoid , NUM_META_INTERVALS , META_STRIDE ) ;
fill_sigmoid ( & meta_data [ DESIRE_LEN + 2 ] , brake_disengage_sigmoid , NUM_META_INTERVALS , META_STRIDE ) ;
fill_sigmoid ( & meta_data [ DESIRE_LEN + 3 ] , steer_override_sigmoid , NUM_META_INTERVALS , META_STRIDE ) ;
fill_sigmoid ( & meta_data [ DESIRE_LEN + 4 ] , brake_3ms2_sigmoid , NUM_META_INTERVALS , META_STRIDE ) ;
fill_sigmoid ( & meta_data [ DESIRE_LEN + 5 ] , brake_4ms2_sigmoid , NUM_META_INTERVALS , META_STRIDE ) ;
fill_sigmoid ( & meta_data [ DESIRE_LEN + 6 ] , brake_5ms2_sigmoid , NUM_META_INTERVALS , META_STRIDE ) ;
//fill_sigmoid(&meta_data[DESIRE_LEN+7], GAS PRESSED, NUM_META_INTERVALS, META_STRIDE);
std : : memmove ( prev_brake_5ms2_probs , & prev_brake_5ms2_probs [ 1 ] , 4 * sizeof ( float ) ) ;
std : : memmove ( prev_brake_3ms2_probs , & prev_brake_3ms2_probs [ 1 ] , 2 * sizeof ( float ) ) ;
prev_brake_5ms2_probs [ 4 ] = brake_5ms2_sigmoid [ 0 ] ;
prev_brake_3ms2_probs [ 2 ] = brake_3ms2_sigmoid [ 0 ] ;
bool above_fcw_threshold = true ;
for ( int i = 0 ; i < 5 ; i + + ) {
float threshold = i < 2 ? FCW_THRESHOLD_5MS2_LOW : FCW_THRESHOLD_5MS2_HIGH ;
above_fcw_threshold = above_fcw_threshold & & prev_brake_5ms2_probs [ i ] > threshold ;
}
for ( int i = 0 ; i < 3 ; i + + ) {
above_fcw_threshold = above_fcw_threshold & & prev_brake_3ms2_probs [ i ] > FCW_THRESHOLD_3MS2 ;
}
auto disengage = meta . initDisengagePredictions ( ) ;
disengage . setT ( { 2 , 4 , 6 , 8 , 10 } ) ;
disengage . setGasDisengageProbs ( gas_disengage_sigmoid ) ;
disengage . setBrakeDisengageProbs ( brake_disengage_sigmoid ) ;
disengage . setSteerOverrideProbs ( steer_override_sigmoid ) ;
disengage . setBrake3MetersPerSecondSquaredProbs ( brake_3ms2_sigmoid ) ;
disengage . setBrake4MetersPerSecondSquaredProbs ( brake_4ms2_sigmoid ) ;
disengage . setBrake5MetersPerSecondSquaredProbs ( brake_5ms2_sigmoid ) ;
meta . setEngagedProb ( sigmoid ( meta_data [ DESIRE_LEN ] ) ) ;
meta . setDesirePrediction ( desire_pred_softmax ) ;
meta . setDesireState ( desire_state_softmax ) ;
meta . setHardBrakePredicted ( above_fcw_threshold ) ;
}
template < size_t size >
void fill_xyzt ( cereal : : ModelDataV2 : : XYZTData : : Builder xyzt , const std : : array < float , size > & t ,
const std : : array < float , size > & x , const std : : array < float , size > & y , const std : : array < float , size > & z ) {
xyzt . setT ( to_kj_array_ptr ( t ) ) ;
xyzt . setX ( to_kj_array_ptr ( x ) ) ;
xyzt . setY ( to_kj_array_ptr ( y ) ) ;
xyzt . setZ ( to_kj_array_ptr ( z ) ) ;
}
template < size_t size >
void fill_xyzt ( cereal : : ModelDataV2 : : XYZTData : : Builder xyzt , const std : : array < float , size > & t ,
const std : : array < float , size > & x , const std : : array < float , size > & y , const std : : array < float , size > & z ,
const std : : array < float , size > & x_std , const std : : array < float , size > & y_std , const std : : array < float , size > & z_std ) {
fill_xyzt ( xyzt , t , x , y , z ) ;
xyzt . setXStd ( to_kj_array_ptr ( x_std ) ) ;
xyzt . setYStd ( to_kj_array_ptr ( y_std ) ) ;
xyzt . setZStd ( to_kj_array_ptr ( z_std ) ) ;
}
void fill_plan ( cereal : : ModelDataV2 : : Builder & framed , const ModelDataRawPlanPrediction & plan ) {
std : : array < float , TRAJECTORY_SIZE > pos_x , pos_y , pos_z ;
std : : array < float , TRAJECTORY_SIZE > pos_x_std , pos_y_std , pos_z_std ;
std : : array < float , TRAJECTORY_SIZE > vel_x , vel_y , vel_z ;
std : : array < float , TRAJECTORY_SIZE > rot_x , rot_y , rot_z ;
std : : array < float , TRAJECTORY_SIZE > rot_rate_x , rot_rate_y , rot_rate_z ;
for ( int i = 0 ; i < TRAJECTORY_SIZE ; i + + ) {
pos_x [ i ] = plan . mean [ i ] . position . x ;
pos_y [ i ] = plan . mean [ i ] . position . y ;
pos_z [ i ] = plan . mean [ i ] . position . z ;
pos_x_std [ i ] = exp ( plan . std [ i ] . position . x ) ;
pos_y_std [ i ] = exp ( plan . std [ i ] . position . y ) ;
pos_z_std [ i ] = exp ( plan . std [ i ] . position . z ) ;
vel_x [ i ] = plan . mean [ i ] . velocity . x ;
vel_y [ i ] = plan . mean [ i ] . velocity . y ;
vel_z [ i ] = plan . mean [ i ] . velocity . z ;
rot_x [ i ] = plan . mean [ i ] . rotation . x ;
rot_y [ i ] = plan . mean [ i ] . rotation . y ;
rot_z [ i ] = plan . mean [ i ] . rotation . z ;
rot_rate_x [ i ] = plan . mean [ i ] . rotation_rate . x ;
rot_rate_y [ i ] = plan . mean [ i ] . rotation_rate . y ;
rot_rate_z [ i ] = plan . mean [ i ] . rotation_rate . z ;
}
fill_xyzt ( framed . initPosition ( ) , T_IDXS_FLOAT , pos_x , pos_y , pos_z , pos_x_std , pos_y_std , pos_z_std ) ;
fill_xyzt ( framed . initVelocity ( ) , T_IDXS_FLOAT , vel_x , vel_y , vel_z ) ;
fill_xyzt ( framed . initOrientation ( ) , T_IDXS_FLOAT , rot_x , rot_y , rot_z ) ;
fill_xyzt ( framed . initOrientationRate ( ) , T_IDXS_FLOAT , rot_rate_x , rot_rate_y , rot_rate_z ) ;
}
void fill_lane_lines ( cereal : : ModelDataV2 : : Builder & framed , const std : : array < float , TRAJECTORY_SIZE > & plan_t ,
const ModelDataRawLaneLines & lanes ) {
std : : array < float , TRAJECTORY_SIZE > left_far_y , left_far_z ;
std : : array < float , TRAJECTORY_SIZE > left_near_y , left_near_z ;
std : : array < float , TRAJECTORY_SIZE > right_near_y , right_near_z ;
std : : array < float , TRAJECTORY_SIZE > right_far_y , right_far_z ;
for ( int j = 0 ; j < TRAJECTORY_SIZE ; j + + ) {
left_far_y [ j ] = lanes . mean . left_far [ j ] . y ;
left_far_z [ j ] = lanes . mean . left_far [ j ] . z ;
left_near_y [ j ] = lanes . mean . left_near [ j ] . y ;
left_near_z [ j ] = lanes . mean . left_near [ j ] . z ;
right_near_y [ j ] = lanes . mean . right_near [ j ] . y ;
right_near_z [ j ] = lanes . mean . right_near [ j ] . z ;
right_far_y [ j ] = lanes . mean . right_far [ j ] . y ;
right_far_z [ j ] = lanes . mean . right_far [ j ] . z ;
}
auto lane_lines = framed . initLaneLines ( 4 ) ;
fill_xyzt ( lane_lines [ 0 ] , plan_t , X_IDXS_FLOAT , left_far_y , left_far_z ) ;
fill_xyzt ( lane_lines [ 1 ] , plan_t , X_IDXS_FLOAT , left_near_y , left_near_z ) ;
fill_xyzt ( lane_lines [ 2 ] , plan_t , X_IDXS_FLOAT , right_near_y , right_near_z ) ;
fill_xyzt ( lane_lines [ 3 ] , plan_t , X_IDXS_FLOAT , right_far_y , right_far_z ) ;
framed . setLaneLineStds ( {
exp ( lanes . std . left_far [ 0 ] . y ) ,
exp ( lanes . std . left_near [ 0 ] . y ) ,
exp ( lanes . std . right_near [ 0 ] . y ) ,
exp ( lanes . std . right_far [ 0 ] . y ) ,
} ) ;
framed . setLaneLineProbs ( {
sigmoid ( lanes . prob . left_far . val ) ,
sigmoid ( lanes . prob . left_near . val ) ,
sigmoid ( lanes . prob . right_near . val ) ,
sigmoid ( lanes . prob . right_far . val ) ,
} ) ;
}
void fill_road_edges ( cereal : : ModelDataV2 : : Builder & framed , const std : : array < float , TRAJECTORY_SIZE > & plan_t ,
const ModelDataRawRoadEdges & edges ) {
std : : array < float , TRAJECTORY_SIZE > left_y , left_z ;
std : : array < float , TRAJECTORY_SIZE > right_y , right_z ;
for ( int j = 0 ; j < TRAJECTORY_SIZE ; j + + ) {
left_y [ j ] = edges . mean . left [ j ] . y ;
left_z [ j ] = edges . mean . left [ j ] . z ;
right_y [ j ] = edges . mean . right [ j ] . y ;
right_z [ j ] = edges . mean . right [ j ] . z ;
}
auto road_edges = framed . initRoadEdges ( 2 ) ;
fill_xyzt ( road_edges [ 0 ] , plan_t , X_IDXS_FLOAT , left_y , left_z ) ;
fill_xyzt ( road_edges [ 1 ] , plan_t , X_IDXS_FLOAT , right_y , right_z ) ;
framed . setRoadEdgeStds ( {
exp ( edges . std . left [ 0 ] . y ) ,
exp ( edges . std . right [ 0 ] . y ) ,
} ) ;
}
void fill_model ( cereal : : ModelDataV2 : : Builder & framed , const ModelDataRaw & net_outputs ) {
auto best_plan = net_outputs . plans - > get_best_prediction ( ) ;
std : : array < float , TRAJECTORY_SIZE > plan_t ;
std : : fill_n ( plan_t . data ( ) , plan_t . size ( ) , NAN ) ;
plan_t [ 0 ] = 0.0 ;
for ( int xidx = 1 , tidx = 0 ; xidx < TRAJECTORY_SIZE ; xidx + + ) {
// increment tidx until we find an element that's further away than the current xidx
for ( int next_tid = tidx + 1 ; next_tid < TRAJECTORY_SIZE & & best_plan . mean [ next_tid ] . position . x < X_IDXS [ xidx ] ; next_tid + + ) {
tidx + + ;
}
if ( tidx = = TRAJECTORY_SIZE - 1 ) {
// if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break
plan_t [ xidx ] = T_IDXS [ TRAJECTORY_SIZE - 1 ] ;
break ;
}
// interpolate to find `t` for the current xidx
float current_x_val = best_plan . mean [ tidx ] . position . x ;
float next_x_val = best_plan . mean [ tidx + 1 ] . position . x ;
float p = ( X_IDXS [ xidx ] - current_x_val ) / ( next_x_val - current_x_val ) ;
plan_t [ xidx ] = p * T_IDXS [ tidx + 1 ] + ( 1 - p ) * T_IDXS [ tidx ] ;
}
fill_plan ( framed , best_plan ) ;
fill_lane_lines ( framed , plan_t , * net_outputs . lane_lines ) ;
fill_road_edges ( framed , plan_t , * net_outputs . road_edges ) ;
// meta
fill_meta ( framed . initMeta ( ) , net_outputs . meta ) ;
// leads
auto leads = framed . initLeadsV3 ( LEAD_MHP_SELECTION ) ;
std : : array < float , LEAD_MHP_SELECTION > t_offsets = { 0.0 , 2.0 , 4.0 } ;
for ( int i = 0 ; i < LEAD_MHP_SELECTION ; i + + ) {
fill_lead ( leads [ i ] , * net_outputs . leads , i , t_offsets [ i ] ) ;
}
}
void model_publish ( PubMaster & pm , uint32_t vipc_frame_id , uint32_t frame_id , float frame_drop ,
const ModelDataRaw & net_outputs , uint64_t timestamp_eof ,
float model_execution_time , kj : : ArrayPtr < const float > raw_pred ) {
const uint32_t frame_age = ( frame_id > vipc_frame_id ) ? ( frame_id - vipc_frame_id ) : 0 ;
MessageBuilder msg ;
auto framed = msg . initEvent ( ) . initModelV2 ( ) ;
framed . setFrameId ( vipc_frame_id ) ;
framed . setFrameAge ( frame_age ) ;
framed . setFrameDropPerc ( frame_drop * 100 ) ;
framed . setTimestampEof ( timestamp_eof ) ;
framed . setModelExecutionTime ( model_execution_time ) ;
if ( send_raw_pred ) {
framed . setRawPredictions ( raw_pred . asBytes ( ) ) ;
}
fill_model ( framed , net_outputs ) ;
pm . send ( " modelV2 " , msg ) ;
}
void posenet_publish ( PubMaster & pm , uint32_t vipc_frame_id , uint32_t vipc_dropped_frames ,
const ModelDataRaw & net_outputs , uint64_t timestamp_eof ) {
MessageBuilder msg ;
auto v_mean = net_outputs . pose - > velocity_mean ;
auto r_mean = net_outputs . pose - > rotation_mean ;
auto v_std = net_outputs . pose - > velocity_std ;
auto r_std = net_outputs . pose - > rotation_std ;
auto posenetd = msg . initEvent ( vipc_dropped_frames < 1 ) . initCameraOdometry ( ) ;
posenetd . setTrans ( { v_mean . x , v_mean . y , v_mean . z } ) ;
posenetd . setRot ( { r_mean . x , r_mean . y , r_mean . z } ) ;
posenetd . setTransStd ( { exp ( v_std . x ) , exp ( v_std . y ) , exp ( v_std . z ) } ) ;
posenetd . setRotStd ( { exp ( r_std . x ) , exp ( r_std . y ) , exp ( r_std . z ) } ) ;
posenetd . setTimestampEof ( timestamp_eof ) ;
posenetd . setFrameId ( vipc_frame_id ) ;
pm . send ( " cameraOdometry " , msg ) ;
}