openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

304 lines
11 KiB

import numpy as np
2 months ago
import capnp
from collections import deque
from functools import partial, cache
import cereal.messaging as messaging
2 months ago
from cereal import log, car
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
BLOCK_SIZE = 100
BLOCK_NUM = 50
BLOCK_NUM_NEEDED = 5
MOVING_WINDOW_SEC = 300.0
MIN_OKAY_WINDOW_SEC = 30.0
MIN_RECOVERY_BUFFER_SEC = 2.0
MIN_VEGO = 15.0
MIN_ABS_YAW_RATE = np.radians(1.0)
MIN_NCC = 0.95
2 months ago
MAX_LAG = 1.0
@cache
2 months ago
def fft_next_good_size(n: int) -> int:
"""
smallest composite of 2, 3, 5, 7, 11 that is >= n
inspired by pocketfft
"""
if n <= 6:
return n
best, f2 = 2 * n, 1
while f2 < best:
f23 = f2
while f23 < best:
f235 = f23
while f235 < best:
f2357 = f235
while f2357 < best:
f235711 = f2357
while f235711 < best:
best = f235711 if f235711 >= n else best
f235711 *= 11
f2357 *= 7
f235 *= 5
f23 *= 3
f2 *= 2
return best
def parabolic_peak_interp(R, max_index):
if max_index == 0 or max_index == len(R) - 1:
return max_index
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1]
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1)
return max_index + offset
2 months ago
def masked_normalized_cross_correlation(expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, n: int):
"""
References:
D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
Pattern Recognition, pp. 2918-2925 (2010).
:DOI:`10.1109/CVPR.2010.5540032`
"""
eps = np.finfo(np.float64).eps
expected_sig = np.asarray(expected_sig, dtype=np.float64)
actual_sig = np.asarray(actual_sig, dtype=np.float64)
expected_sig[~mask] = 0.0
actual_sig[~mask] = 0.0
rotated_expected_sig = expected_sig[::-1]
rotated_mask = mask[::-1]
fft = partial(np.fft.fft, n=n)
actual_sig_fft = fft(actual_sig)
rotated_expected_sig_fft = fft(rotated_expected_sig)
actual_mask_fft = fft(mask.astype(np.float64))
rotated_mask_fft = fft(rotated_mask.astype(np.float64))
number_overlap_masked_samples = np.fft.ifft(rotated_mask_fft * actual_mask_fft).real
number_overlap_masked_samples[:] = np.round(number_overlap_masked_samples)
number_overlap_masked_samples[:] = np.fmax(number_overlap_masked_samples, eps)
masked_correlated_actual_fft = np.fft.ifft(rotated_mask_fft * actual_sig_fft).real
masked_correlated_expected_fft = np.fft.ifft(actual_mask_fft * rotated_expected_sig_fft).real
numerator = np.fft.ifft(rotated_expected_sig_fft * actual_sig_fft).real
numerator -= masked_correlated_actual_fft * masked_correlated_expected_fft / number_overlap_masked_samples
actual_squared_fft = fft(actual_sig ** 2)
actual_sig_denom = np.fft.ifft(rotated_mask_fft * actual_squared_fft).real
actual_sig_denom -= masked_correlated_actual_fft ** 2 / number_overlap_masked_samples
actual_sig_denom[:] = np.fmax(actual_sig_denom, 0.0)
rotated_expected_squared_fft = fft(rotated_expected_sig ** 2)
expected_sig_denom = np.fft.ifft(actual_mask_fft * rotated_expected_squared_fft).real
expected_sig_denom -= masked_correlated_expected_fft ** 2 / number_overlap_masked_samples
expected_sig_denom[:] = np.fmax(expected_sig_denom, 0.0)
denom = np.sqrt(actual_sig_denom * expected_sig_denom)
# zero-out samples with very small denominators
tol = 1e3 * eps * np.max(np.abs(denom), keepdims=True)
nonzero_indices = denom > tol
ncc = np.zeros_like(denom, dtype=np.float64)
ncc[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
np.clip(ncc, -1, 1, out=ncc)
return ncc
class Points:
2 months ago
def __init__(self, num_points: int):
2 months ago
self.times = deque[float](maxlen=num_points)
self.okay = deque[bool](maxlen=num_points)
self.desired = deque[float](maxlen=num_points)
self.actual = deque[float](maxlen=num_points)
@property
def num_points(self):
return len(self.desired)
@property
def num_okay(self):
return np.count_nonzero(self.okay)
2 months ago
def update(self, t: float, desired: float, actual: float, okay: bool):
self.times.append(t)
self.okay.append(okay)
self.desired.append(desired)
self.actual.append(actual)
2 months ago
def get(self) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
return np.array(self.times), np.array(self.desired), np.array(self.actual), np.array(self.okay)
class BlockAverage:
2 months ago
def __init__(self, num_blocks: int, block_size: int, valid_blocks: int, initial_value: float):
self.num_blocks = num_blocks
self.block_size = block_size
self.block_idx = valid_blocks % block_size
self.idx = 0
self.values = np.tile(initial_value, (num_blocks, 1))
self.valid_blocks = valid_blocks
2 months ago
def update(self, value: float):
self.values[self.block_idx] = (self.idx * self.values[self.block_idx] + (self.block_size - self.idx) * value) / self.block_size
self.idx = (self.idx + 1) % self.block_size
if self.idx == 0:
self.block_idx = (self.block_idx + 1) % self.num_blocks
self.valid_blocks = min(self.valid_blocks + 1, self.num_blocks)
2 months ago
def get(self) -> float | None:
valid_block_idx = [i for i in range(self.valid_blocks) if i != self.block_idx]
if not valid_block_idx:
return None
return float(np.mean(self.values[valid_block_idx], axis=0).item())
class LateralLagEstimator:
inputs = {"carControl", "carState", "controlsState", "liveCalibration", "livePose"}
2 months ago
def __init__(self, CP: car.CarParams, dt: float,
block_count: int = BLOCK_NUM, min_valid_block_count: int = BLOCK_NUM_NEEDED, block_size: int = BLOCK_SIZE,
window_sec: float = MOVING_WINDOW_SEC, okay_window_sec: float = MIN_OKAY_WINDOW_SEC, min_recovery_buffer_sec: float = MIN_RECOVERY_BUFFER_SEC,
min_vego: float = MIN_VEGO, min_yr: float = MIN_ABS_YAW_RATE, min_ncc: float = MIN_NCC):
self.dt = dt
self.window_sec = window_sec
self.okay_window_sec = okay_window_sec
self.min_recovery_buffer_sec = min_recovery_buffer_sec
self.initial_lag = CP.steerActuatorDelay + 0.2
self.block_size = block_size
self.block_count = block_count
self.min_valid_block_count = min_valid_block_count
self.min_vego = min_vego
self.min_yr = min_yr
self.min_ncc = min_ncc
2 months ago
self.t = 0.0
self.lat_active = False
self.steering_pressed = False
self.steering_saturated = False
2 months ago
self.desired_curvature = 0.0
self.v_ego = 0.0
self.yaw_rate = 0.0
self.last_lat_inactive_t = 0.0
self.last_steering_pressed_t = 0.0
self.last_steering_saturated_t = 0.0
self.last_estimate_t = 0.0
self.calibrator = PoseCalibrator()
self.reset(self.initial_lag, 0)
2 months ago
def reset(self, initial_lag: float, valid_blocks: int):
window_len = int(self.window_sec / self.dt)
self.points = Points(window_len)
self.block_avg = BlockAverage(self.block_count, self.block_size, valid_blocks, initial_lag)
2 months ago
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
msg = messaging.new_message('liveDelay')
msg.valid = valid
liveDelay = msg.liveDelay
estimated_lag = self.block_avg.get()
liveDelay.lateralDelayEstimate = estimated_lag or self.initial_lag
if self.block_avg.valid_blocks >= self.min_valid_block_count and estimated_lag is not None:
liveDelay.status = log.LiveDelayData.Status.estimated
liveDelay.lateralDelay = estimated_lag
else:
liveDelay.status = log.LiveDelayData.Status.unestimated
liveDelay.lateralDelay = self.initial_lag
liveDelay.validBlocks = self.block_avg.valid_blocks
if debug:
liveDelay.points = self.block_avg.values.flatten().tolist()
return msg
2 months ago
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
if which == "carControl":
self.lat_active = msg.latActive
elif which == "carState":
self.steering_pressed = msg.steeringPressed
self.v_ego = msg.vEgo
elif which == "controlsState":
self.steering_saturated = getattr(msg.lateralControlState, msg.lateralControlState.which()).saturated
self.desired_curvature = msg.desiredCurvature
elif which == "liveCalibration":
self.calibrator.feed_live_calib(msg)
elif which == "livePose":
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
self.yaw_rate = calibrated_pose.angular_velocity.z
self.t = t
def points_enough(self):
return self.points.num_points >= int(self.okay_window_sec / self.dt)
def points_valid(self):
return self.points.num_okay >= int(self.okay_window_sec / self.dt)
def update_points(self):
if not self.lat_active:
self.last_lat_inactive_t = self.t
if self.steering_pressed:
self.last_steering_pressed_t = self.t
if self.steering_saturated:
self.last_steering_saturated_t = self.t
la_desired = self.desired_curvature * self.v_ego * self.v_ego
la_actual_pose = self.yaw_rate * self.v_ego
fast = self.v_ego > self.min_vego
turning = np.abs(self.yaw_rate) >= self.min_yr
has_recovered = all( # wait for recovery after !lat_active, steering_pressed, steering_saturated
self.t - last_t >= self.min_recovery_buffer_sec
for last_t in [self.last_lat_inactive_t, self.last_steering_pressed_t, self.last_steering_saturated_t]
)
okay = self.lat_active and not self.steering_pressed and not self.steering_saturated and fast and turning and has_recovered
self.points.update(self.t, la_desired, la_actual_pose, okay)
def update_estimate(self):
if not self.points_enough():
return
times, desired, actual, okay = self.points.get()
# check if there are any new valid data points since the last update
is_valid = self.points_valid()
if self.last_estimate_t != 0 and times[0] <= self.last_estimate_t:
new_values_start_idx = next(-i for i, t in enumerate(reversed(times)) if t <= self.last_estimate_t)
is_valid = is_valid and not (new_values_start_idx == 0 or not np.any(okay[new_values_start_idx:]))
2 months ago
delay, corr = self.actuator_delay(desired, actual, okay, self.dt, MAX_LAG)
if corr < self.min_ncc or not is_valid:
return
self.block_avg.update(delay)
self.last_estimate_t = self.t
2 months ago
def actuator_delay(self, expected_sig: np.ndarray, actual_sig: np.ndarray, mask: np.ndarray, dt: float, max_lag: float) -> tuple[float, float]:
assert len(expected_sig) == len(actual_sig)
max_lag_samples = int(max_lag / dt)
padded_size = fft_next_good_size(len(expected_sig) + max_lag_samples)
ncc = masked_normalized_cross_correlation(expected_sig, actual_sig, mask, padded_size)
# only consider lags from 0 to max_lag
roi_ncc = ncc[len(expected_sig) - 1: len(expected_sig) - 1 + max_lag_samples]
max_corr_index = np.argmax(roi_ncc)
corr = roi_ncc[max_corr_index]
lag = parabolic_peak_interp(roi_ncc, max_corr_index) * dt
return lag, corr