#!/usr/bin/env python3
import importlib
import math
from collections import deque
from typing import Optional , Dict , Any
import capnp
from cereal import messaging , log , car
from openpilot . common . numpy_fast import interp
from openpilot . common . params import Params
from openpilot . common . realtime import Ratekeeper , Priority , config_realtime_process
from openpilot . system . swaglog import cloudlog
from openpilot . common . kalman . simple_kalman import KF1D
# Default lead acceleration decay set to 50% at 1s
_LEAD_ACCEL_TAU = 1.5
# radar tracks
SPEED , ACCEL = 0 , 1 # Kalman filter states enum
# stationary qualification parameters
V_EGO_STATIONARY = 4. # no stationary object flag below this speed
RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame
class KalmanParams :
def __init__ ( self , dt : float ) :
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
assert dt > .01 and dt < .2 , " Radar time step must be between .01s and 0.2s "
self . A = [ [ 1.0 , dt ] , [ 0.0 , 1.0 ] ]
self . C = [ 1.0 , 0.0 ]
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
#R = 1e3
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
dts = [ dt * 0.01 for dt in range ( 1 , 21 ) ]
K0 = [ 0.12287673 , 0.14556536 , 0.16522756 , 0.18281627 , 0.1988689 , 0.21372394 ,
0.22761098 , 0.24069424 , 0.253096 , 0.26491023 , 0.27621103 , 0.28705801 ,
0.29750003 , 0.30757767 , 0.31732515 , 0.32677158 , 0.33594201 , 0.34485814 ,
0.35353899 , 0.36200124 ]
K1 = [ 0.29666309 , 0.29330885 , 0.29042818 , 0.28787125 , 0.28555364 , 0.28342219 ,
0.28144091 , 0.27958406 , 0.27783249 , 0.27617149 , 0.27458948 , 0.27307714 ,
0.27162685 , 0.27023228 , 0.26888809 , 0.26758976 , 0.26633338 , 0.26511557 ,
0.26393339 , 0.26278425 ]
self . K = [ [ interp ( dt , dts , K0 ) ] , [ interp ( dt , dts , K1 ) ] ]
class Track :
def __init__ ( self , v_lead : float , kalman_params : KalmanParams ) :
self . cnt = 0
self . aLeadTau = _LEAD_ACCEL_TAU
self . K_A = kalman_params . A
self . K_C = kalman_params . C
self . K_K = kalman_params . K
self . kf = KF1D ( [ [ v_lead ] , [ 0.0 ] ] , self . K_A , self . K_C , self . K_K )
def update ( self , d_rel : float , y_rel : float , v_rel : float , v_lead : float , measured : float ) :
# relative values, copy
self . dRel = d_rel # LONG_DIST
self . yRel = y_rel # -LAT_DIST
self . vRel = v_rel # REL_SPEED
self . vLead = v_lead
self . measured = measured # measured or estimate
# computed velocity and accelerations
if self . cnt > 0 :
self . kf . update ( self . vLead )
self . vLeadK = float ( self . kf . x [ SPEED ] [ 0 ] )
self . aLeadK = float ( self . kf . x [ ACCEL ] [ 0 ] )
# Learn if constant acceleration
if abs ( self . aLeadK ) < 0.5 :
self . aLeadTau = _LEAD_ACCEL_TAU
else :
self . aLeadTau * = 0.9
self . cnt + = 1
def get_key_for_cluster ( self ) :
# Weigh y higher since radar is inaccurate in this dimension
return [ self . dRel , self . yRel * 2 , self . vRel ]
def reset_a_lead ( self , aLeadK : float , aLeadTau : float ) :
self . kf = KF1D ( [ [ self . vLead ] , [ aLeadK ] ] , self . K_A , self . K_C , self . K_K )
self . aLeadK = aLeadK
self . aLeadTau = aLeadTau
def get_RadarState ( self , model_prob : float = 0.0 ) :
return {
" dRel " : float ( self . dRel ) ,
" yRel " : float ( self . yRel ) ,
" vRel " : float ( self . vRel ) ,
" vLead " : float ( self . vLead ) ,
" vLeadK " : float ( self . vLeadK ) ,
" aLeadK " : float ( self . aLeadK ) ,
" status " : True ,
" fcw " : self . is_potential_fcw ( model_prob ) ,
" modelProb " : model_prob ,
" radar " : True ,
" aLeadTau " : float ( self . aLeadTau )
}
def potential_low_speed_lead ( self , v_ego : float ) :
# stop for stuff in front of you and low speed, even without model confirmation
# Radar points closer than 0.75, are almost always glitches on toyota radars
return abs ( self . yRel ) < 1.0 and ( v_ego < V_EGO_STATIONARY ) and ( 0.75 < self . dRel < 25 )
def is_potential_fcw ( self , model_prob : float ) :
return model_prob > .9
def __str__ ( self ) :
ret = f " x: { self . dRel : 4.1f } y: { self . yRel : 4.1f } v: { self . vRel : 4.1f } a: { self . aLeadK : 4.1f } "
return ret
def laplacian_pdf ( x : float , mu : float , b : float ) :
b = max ( b , 1e-4 )
return math . exp ( - abs ( x - mu ) / b )
def match_vision_to_track ( v_ego : float , lead : capnp . _DynamicStructReader , tracks : Dict [ int , Track ] ) :
offset_vision_dist = lead . x [ 0 ] - RADAR_TO_CAMERA
def prob ( c ) :
prob_d = laplacian_pdf ( c . dRel , offset_vision_dist , lead . xStd [ 0 ] )
prob_y = laplacian_pdf ( c . yRel , - lead . y [ 0 ] , lead . yStd [ 0 ] )
prob_v = laplacian_pdf ( c . vRel + v_ego , lead . v [ 0 ] , lead . vStd [ 0 ] )
# This is isn't exactly right, but good heuristic
return prob_d * prob_y * prob_v
track = max ( tracks . values ( ) , key = prob )
# if no 'sane' match is found return -1
# stationary radar points can be false positives
dist_sane = abs ( track . dRel - offset_vision_dist ) < max ( [ ( offset_vision_dist ) * .25 , 5.0 ] )
vel_sane = ( abs ( track . vRel + v_ego - lead . v [ 0 ] ) < 10 ) or ( v_ego + track . vRel > 3 )
if dist_sane and vel_sane :
return track
else :
return None
def get_RadarState_from_vision ( lead_msg : capnp . _DynamicStructReader , v_ego : float , model_v_ego : float ) :
lead_v_rel_pred = lead_msg . v [ 0 ] - model_v_ego
return {
" dRel " : float ( lead_msg . x [ 0 ] - RADAR_TO_CAMERA ) ,
" yRel " : float ( - lead_msg . y [ 0 ] ) ,
" vRel " : float ( lead_v_rel_pred ) ,
" vLead " : float ( v_ego + lead_v_rel_pred ) ,
" vLeadK " : float ( v_ego + lead_v_rel_pred ) ,
" aLeadK " : 0.0 ,
" aLeadTau " : 0.3 ,
" fcw " : False ,
" modelProb " : float ( lead_msg . prob ) ,
" radar " : False ,
" status " : True
}
def get_lead ( v_ego : float , ready : bool , tracks : Dict [ int , Track ] , lead_msg : capnp . _DynamicStructReader ,
model_v_ego : float , low_speed_override : bool = True ) - > Dict [ str , Any ] :
# Determine leads, this is where the essential logic happens
if len ( tracks ) > 0 and ready and lead_msg . prob > .5 :
track = match_vision_to_track ( v_ego , lead_msg , tracks )
else :
track = None
lead_dict = { ' status ' : False }
if track is not None :
lead_dict = track . get_RadarState ( lead_msg . prob )
elif ( track is None ) and ready and ( lead_msg . prob > .5 ) :
lead_dict = get_RadarState_from_vision ( lead_msg , v_ego , model_v_ego )
if low_speed_override :
low_speed_tracks = [ c for c in tracks . values ( ) if c . potential_low_speed_lead ( v_ego ) ]
if len ( low_speed_tracks ) > 0 :
closest_track = min ( low_speed_tracks , key = lambda c : c . dRel )
# Only choose new track if it is actually closer than the previous one
if ( not lead_dict [ ' status ' ] ) or ( closest_track . dRel < lead_dict [ ' dRel ' ] ) :
lead_dict = closest_track . get_RadarState ( )
return lead_dict
class RadarD :
def __init__ ( self , radar_ts : float , delay : int = 0 ) :
self . current_time = 0.0
self . tracks : Dict [ int , Track ] = { }
self . kalman_params = KalmanParams ( radar_ts )
self . v_ego = 0.0
self . v_ego_hist = deque ( [ 0.0 ] , maxlen = delay + 1 )
self . radar_state : Optional [ capnp . _DynamicStructBuilder ] = None
self . radar_state_valid = False
self . ready = False
def update ( self , sm : messaging . SubMaster , rr : Optional [ car . RadarData ] ) :
self . current_time = 1e-9 * max ( sm . logMonoTime . values ( ) )
radar_points = [ ]
radar_errors = [ ]
if rr is not None :
radar_points = rr . points
radar_errors = rr . errors
if sm . updated [ ' carState ' ] :
self . v_ego = sm [ ' carState ' ] . vEgo
self . v_ego_hist . append ( self . v_ego )
if sm . updated [ ' modelV2 ' ] :
self . ready = True
ar_pts = { }
for pt in radar_points :
ar_pts [ pt . trackId ] = [ pt . dRel , pt . yRel , pt . vRel , pt . measured ]
# *** remove missing points from meta data ***
for ids in list ( self . tracks . keys ( ) ) :
if ids not in ar_pts :
self . tracks . pop ( ids , None )
# *** compute the tracks ***
for ids in ar_pts :
rpt = ar_pts [ ids ]
# align v_ego by a fixed time to align it with the radar measurement
v_lead = rpt [ 2 ] + self . v_ego_hist [ 0 ]
# create the track if it doesn't exist or it's a new track
if ids not in self . tracks :
self . tracks [ ids ] = Track ( v_lead , self . kalman_params )
self . tracks [ ids ] . update ( rpt [ 0 ] , rpt [ 1 ] , rpt [ 2 ] , v_lead , rpt [ 3 ] )
# *** publish radarState ***
self . radar_state_valid = sm . all_checks ( ) and len ( radar_errors ) == 0
self . radar_state = log . RadarState . new_message ( )
self . radar_state . mdMonoTime = sm . logMonoTime [ ' modelV2 ' ]
self . radar_state . radarErrors = list ( radar_errors )
self . radar_state . carStateMonoTime = sm . logMonoTime [ ' carState ' ]
if len ( sm [ ' modelV2 ' ] . temporalPose . trans ) :
model_v_ego = sm [ ' modelV2 ' ] . temporalPose . trans [ 0 ]
else :
model_v_ego = self . v_ego
leads_v3 = sm [ ' modelV2 ' ] . leadsV3
if len ( leads_v3 ) > 1 :
self . radar_state . leadOne = get_lead ( self . v_ego , self . ready , self . tracks , leads_v3 [ 0 ] , model_v_ego , low_speed_override = True )
self . radar_state . leadTwo = get_lead ( self . v_ego , self . ready , self . tracks , leads_v3 [ 1 ] , model_v_ego , low_speed_override = False )
def publish ( self , pm : messaging . PubMaster , lag_ms : float ) :
assert self . radar_state is not None
radar_msg = messaging . new_message ( " radarState " )
radar_msg . valid = self . radar_state_valid
radar_msg . radarState = self . radar_state
radar_msg . radarState . cumLagMs = lag_ms
pm . send ( " radarState " , radar_msg )
# publish tracks for UI debugging (keep last)
tracks_msg = messaging . new_message ( ' liveTracks ' , len ( self . tracks ) )
for index , tid in enumerate ( sorted ( self . tracks . keys ( ) ) ) :
tracks_msg . liveTracks [ index ] = {
" trackId " : tid ,
" dRel " : float ( self . tracks [ tid ] . dRel ) ,
" yRel " : float ( self . tracks [ tid ] . yRel ) ,
" vRel " : float ( self . tracks [ tid ] . vRel ) ,
}
pm . send ( ' liveTracks ' , tracks_msg )
# fuses camera and radar data for best lead detection
def radard_thread ( sm : Optional [ messaging . SubMaster ] = None , pm : Optional [ messaging . PubMaster ] = None , can_sock : Optional [ messaging . SubSocket ] = None ) :
config_realtime_process ( 5 , Priority . CTRL_LOW )
# wait for stats about the car to come in from controls
cloudlog . info ( " radard is waiting for CarParams " )
with car . CarParams . from_bytes ( Params ( ) . get ( " CarParams " , block = True ) ) as msg :
CP = msg
cloudlog . info ( " radard got CarParams " )
# import the radar from the fingerprint
cloudlog . info ( " radard is importing %s " , CP . carName )
RadarInterface = importlib . import_module ( f ' selfdrive.car. { CP . carName } .radar_interface ' ) . RadarInterface
# *** setup messaging
if can_sock is None :
can_sock = messaging . sub_sock ( ' can ' )
if sm is None :
sm = messaging . SubMaster ( [ ' modelV2 ' , ' carState ' ] , ignore_avg_freq = [ ' modelV2 ' , ' carState ' ] ) # Can't check average frequency, since radar determines timing
if pm is None :
pm = messaging . PubMaster ( [ ' radarState ' , ' liveTracks ' ] )
RI = RadarInterface ( CP )
rk = Ratekeeper ( 1.0 / CP . radarTimeStep , print_delay_threshold = None )
RD = RadarD ( CP . radarTimeStep , RI . delay )
while 1 :
can_strings = messaging . drain_sock_raw ( can_sock , wait_for_one = True )
rr = RI . update ( can_strings )
if rr is None :
continue
sm . update ( 0 )
RD . update ( sm , rr )
RD . publish ( pm , - rk . remaining * 1000.0 )
rk . monitor_time ( )
def main ( sm : Optional [ messaging . SubMaster ] = None , pm : Optional [ messaging . PubMaster ] = None , can_sock : messaging . SubSocket = None ) :
radard_thread ( sm , pm , can_sock )
if __name__ == " __main__ " :
main ( )