You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					114 lines
				
				3.0 KiB
			
		
		
			
		
	
	
					114 lines
				
				3.0 KiB
			| 
								 
											8 months ago
										 
									 | 
							
								# code from https://x.com/awnihannun/status/1832511021602500796
							 | 
						||
| 
								 | 
							
								from huggingface_hub import snapshot_download
							 | 
						||
| 
								 | 
							
								import mlx.core as mx
							 | 
						||
| 
								 | 
							
								import mlx.nn as nn
							 | 
						||
| 
								 | 
							
								import time
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class Block(nn.Module):
							 | 
						||
| 
								 | 
							
								  def __init__(self, in_dims, dims, stride=1):
							 | 
						||
| 
								 | 
							
								    super().__init__()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    self.conv1 = nn.Conv2d(
							 | 
						||
| 
								 | 
							
								      in_dims, dims, kernel_size=3, stride=stride, padding=1, bias=False
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								    self.bn1 = nn.BatchNorm(dims)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    self.conv2 = nn.Conv2d(
							 | 
						||
| 
								 | 
							
								      dims, dims, kernel_size=3, stride=1, padding=1, bias=False
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								    self.bn2 = nn.BatchNorm(dims)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    self.downsample = []
							 | 
						||
| 
								 | 
							
								    if stride != 1:
							 | 
						||
| 
								 | 
							
								      self.downsample = [
							 | 
						||
| 
								 | 
							
								        nn.Conv2d(in_dims, dims, kernel_size=1, stride=stride, bias=False),
							 | 
						||
| 
								 | 
							
								        nn.BatchNorm(dims)
							 | 
						||
| 
								 | 
							
								      ]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  def __call__(self, x):
							 | 
						||
| 
								 | 
							
								    out = nn.relu(self.bn1(self.conv1(x)))
							 | 
						||
| 
								 | 
							
								    out = self.bn2(self.conv2(out))
							 | 
						||
| 
								 | 
							
								    for l in self.downsample:
							 | 
						||
| 
								 | 
							
								      x = l(x)
							 | 
						||
| 
								 | 
							
								    out += x
							 | 
						||
| 
								 | 
							
								    out = nn.relu(out)
							 | 
						||
| 
								 | 
							
								    return out
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class ResNet(nn.Module):
							 | 
						||
| 
								 | 
							
								  def __init__(self, block, num_blocks, num_classes=10):
							 | 
						||
| 
								 | 
							
								    super().__init__()
							 | 
						||
| 
								 | 
							
								    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
							 | 
						||
| 
								 | 
							
								    self.bn1 = nn.BatchNorm(64)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
							 | 
						||
| 
								 | 
							
								    self.layer1 = self._make_layer(block, 64, 64, num_blocks[0], stride=1)
							 | 
						||
| 
								 | 
							
								    self.layer2 = self._make_layer(block, 64, 128, num_blocks[1], stride=2)
							 | 
						||
| 
								 | 
							
								    self.layer3 = self._make_layer(block, 128, 256, num_blocks[2], stride=2)
							 | 
						||
| 
								 | 
							
								    self.layer4 = self._make_layer(block, 256, 512, num_blocks[3], stride=2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    self.fc = nn.Linear(512, num_classes)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  def _make_layer(self, block, in_dims, dims, num_blocks, stride):
							 | 
						||
| 
								 | 
							
								    strides = [stride] + [1] * (num_blocks - 1)
							 | 
						||
| 
								 | 
							
								    layers = []
							 | 
						||
| 
								 | 
							
								    for stride in strides:
							 | 
						||
| 
								 | 
							
								      layers.append(block(in_dims, dims, stride))
							 | 
						||
| 
								 | 
							
								      in_dims = dims
							 | 
						||
| 
								 | 
							
								    return layers
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  def __call__(self, x):
							 | 
						||
| 
								 | 
							
								    x = nn.relu(self.bn1(self.conv1(x)))
							 | 
						||
| 
								 | 
							
								    x = self.maxpool(x)
							 | 
						||
| 
								 | 
							
								    for l in self.layer1 + self.layer2 + self.layer3 + self.layer4:
							 | 
						||
| 
								 | 
							
								      x = l(x)
							 | 
						||
| 
								 | 
							
								    x = mx.mean(x, axis=[1, 2])
							 | 
						||
| 
								 | 
							
								    x = self.fc(x)
							 | 
						||
| 
								 | 
							
								    return x
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def load():
							 | 
						||
| 
								 | 
							
								  model = ResNet(Block, [2, 2, 2, 2], num_classes=1000)
							 | 
						||
| 
								 | 
							
								  file = "model.safetensors"
							 | 
						||
| 
								 | 
							
								  model_path = snapshot_download(
							 | 
						||
| 
								 | 
							
								    repo_id="awni/resnet18-mlx",
							 | 
						||
| 
								 | 
							
								    allow_patterns=[file],
							 | 
						||
| 
								 | 
							
								  )
							 | 
						||
| 
								 | 
							
								  model.load_weights(model_path + "/" + file)
							 | 
						||
| 
								 | 
							
								  model.eval()
							 | 
						||
| 
								 | 
							
								  mx.eval(model)
							 | 
						||
| 
								 | 
							
								  return model
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								if __name__ == "__main__":
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  resnet18 = load()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  @mx.compile
							 | 
						||
| 
								 | 
							
								  def forward(im):
							 | 
						||
| 
								 | 
							
								    return resnet18(im)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  batch_sizes = [1, 2, 4, 8, 16, 32, 64]
							 | 
						||
| 
								 | 
							
								  #its = 200
							 | 
						||
| 
								 | 
							
								  #batch_sizes = [64]
							 | 
						||
| 
								 | 
							
								  its = 20
							 | 
						||
| 
								 | 
							
								  print(f"Batch Size | Images-per-second | Milliseconds-per-image")
							 | 
						||
| 
								 | 
							
								  print(f"---- | ---- | ---- ")
							 | 
						||
| 
								 | 
							
								  for N in batch_sizes:
							 | 
						||
| 
								 | 
							
								    image = mx.random.uniform(shape=(N, 288, 288, 3))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Warmup
							 | 
						||
| 
								 | 
							
								    for _ in range(5):
							 | 
						||
| 
								 | 
							
								      output = forward(image)
							 | 
						||
| 
								 | 
							
								      mx.eval(output)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    tic = time.time()
							 | 
						||
| 
								 | 
							
								    for _ in range(its):
							 | 
						||
| 
								 | 
							
								      output = forward(image)
							 | 
						||
| 
								 | 
							
								      mx.async_eval(output)
							 | 
						||
| 
								 | 
							
								    mx.eval(output)
							 | 
						||
| 
								 | 
							
								    toc = time.time()
							 | 
						||
| 
								 | 
							
								    ims_per_sec = N * its / (toc - tic)
							 | 
						||
| 
								 | 
							
								    ms_per_im = 1e3 / ims_per_sec
							 | 
						||
| 
								 | 
							
								    print(f"{N} | {ims_per_sec:.3f} | {ms_per_im:.3f}")
							 |