openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

582 lines
19 KiB

#include <cassert>
#include <sys/mman.h>
#include <dlfcn.h>
#include <map>
#include <string>
#include <string.h>
#include <errno.h>
#include "thneed.h"
//#define SAVE_KERNELS
//#define RUN_DISASSEMBLER
//#define RUN_OPTIMIZER
Thneed *g_thneed = NULL;
int g_fd = -1;
map<pair<cl_kernel, int>, string> g_args;
map<pair<cl_kernel, int>, int> g_args_size;
map<cl_program, string> g_program_source;
static inline uint64_t nanos_since_boot() {
struct timespec t;
clock_gettime(CLOCK_BOOTTIME, &t);
return t.tv_sec * 1000000000ULL + t.tv_nsec;
}
void hexdump(uint32_t *d, int len) {
assert((len%4) == 0);
printf(" dumping %p len 0x%x\n", d, len);
for (int i = 0; i < len/4; i++) {
if (i != 0 && (i%0x10) == 0) printf("\n");
printf("%8x ", d[i]);
}
printf("\n");
}
// *********** ioctl interceptor ***********
extern "C" {
int (*my_ioctl)(int filedes, unsigned long request, void *argp) = NULL;
#undef ioctl
int ioctl(int filedes, unsigned long request, void *argp) {
request &= 0xFFFFFFFF; // needed on QCOM2
if (my_ioctl == NULL) my_ioctl = reinterpret_cast<decltype(my_ioctl)>(dlsym(RTLD_NEXT, "ioctl"));
Thneed *thneed = g_thneed;
// save the fd
if (request == IOCTL_KGSL_GPUOBJ_ALLOC) g_fd = filedes;
// note that this runs always, even without a thneed object
if (request == IOCTL_KGSL_DRAWCTXT_CREATE) {
struct kgsl_drawctxt_create *create = (struct kgsl_drawctxt_create *)argp;
create->flags &= ~KGSL_CONTEXT_PRIORITY_MASK;
create->flags |= 1 << KGSL_CONTEXT_PRIORITY_SHIFT; // priority from 1-15, 1 is max priority
printf("IOCTL_KGSL_DRAWCTXT_CREATE: creating context with flags 0x%x\n", create->flags);
}
if (thneed != NULL) {
if (request == IOCTL_KGSL_GPU_COMMAND) {
struct kgsl_gpu_command *cmd = (struct kgsl_gpu_command *)argp;
if (thneed->record & THNEED_RECORD) {
thneed->timestamp = cmd->timestamp;
thneed->context_id = cmd->context_id;
thneed->cmds.push_back(unique_ptr<CachedCommand>(new CachedCommand(thneed, cmd)));
}
if (thneed->record & THNEED_DEBUG) {
printf("IOCTL_KGSL_GPU_COMMAND(%2zu): flags: 0x%lx context_id: %u timestamp: %u numcmds: %d numobjs: %d\n",
thneed->cmds.size(),
cmd->flags,
cmd->context_id, cmd->timestamp, cmd->numcmds, cmd->numobjs);
}
} else if (request == IOCTL_KGSL_GPUOBJ_SYNC) {
struct kgsl_gpuobj_sync *cmd = (struct kgsl_gpuobj_sync *)argp;
struct kgsl_gpuobj_sync_obj *objs = (struct kgsl_gpuobj_sync_obj *)(cmd->objs);
if (thneed->record & THNEED_DEBUG) {
printf("IOCTL_KGSL_GPUOBJ_SYNC count:%d ", cmd->count);
for (int i = 0; i < cmd->count; i++) {
printf(" -- offset:0x%lx len:0x%lx id:%d op:%d ", objs[i].offset, objs[i].length, objs[i].id, objs[i].op);
}
printf("\n");
}
if (thneed->record & THNEED_RECORD) {
thneed->syncobjs.push_back(string((char *)objs, sizeof(struct kgsl_gpuobj_sync_obj)*cmd->count));
}
} else if (request == IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID) {
struct kgsl_device_waittimestamp_ctxtid *cmd = (struct kgsl_device_waittimestamp_ctxtid *)argp;
if (thneed->record & THNEED_DEBUG) {
printf("IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID: context_id: %d timestamp: %d timeout: %d\n",
cmd->context_id, cmd->timestamp, cmd->timeout);
}
} else if (request == IOCTL_KGSL_SETPROPERTY) {
if (thneed->record & THNEED_DEBUG) {
struct kgsl_device_getproperty *prop = (struct kgsl_device_getproperty *)argp;
printf("IOCTL_KGSL_SETPROPERTY: 0x%x sizebytes:%zu\n", prop->type, prop->sizebytes);
if (thneed->record & THNEED_VERBOSE_DEBUG) {
hexdump((uint32_t *)prop->value, prop->sizebytes);
if (prop->type == KGSL_PROP_PWR_CONSTRAINT) {
struct kgsl_device_constraint *constraint = (struct kgsl_device_constraint *)prop->value;
hexdump((uint32_t *)constraint->data, constraint->size);
}
}
}
}
}
int ret = my_ioctl(filedes, request, argp);
if (ret != 0) printf("ioctl returned %d with errno %d\n", ret, errno);
return ret;
}
}
// *********** GPUMalloc ***********
GPUMalloc::GPUMalloc(int size, int fd) {
struct kgsl_gpuobj_alloc alloc;
memset(&alloc, 0, sizeof(alloc));
alloc.size = size;
alloc.flags = 0x10000a00;
ioctl(fd, IOCTL_KGSL_GPUOBJ_ALLOC, &alloc);
void *addr = mmap64(NULL, alloc.mmapsize, 0x3, 0x1, fd, alloc.id*0x1000);
assert(addr != MAP_FAILED);
base = (uint64_t)addr;
remaining = size;
}
GPUMalloc::~GPUMalloc() {
// TODO: free the GPU malloced area
}
void *GPUMalloc::alloc(int size) {
if (size > remaining) return NULL;
remaining -= size;
void *ret = (void*)base;
base += (size+0xff) & (~0xFF);
return ret;
}
// *********** CachedCommand, at the ioctl layer ***********
CachedCommand::CachedCommand(Thneed *lthneed, struct kgsl_gpu_command *cmd) {
thneed = lthneed;
assert(cmd->numsyncs == 0);
memcpy(&cache, cmd, sizeof(cache));
if (cmd->numcmds > 0) {
cmds = make_unique<struct kgsl_command_object[]>(cmd->numcmds);
memcpy(cmds.get(), (void *)cmd->cmdlist, sizeof(struct kgsl_command_object)*cmd->numcmds);
cache.cmdlist = (uint64_t)cmds.get();
for (int i = 0; i < cmd->numcmds; i++) {
void *nn = thneed->ram->alloc(cmds[i].size);
memcpy(nn, (void*)cmds[i].gpuaddr, cmds[i].size);
cmds[i].gpuaddr = (uint64_t)nn;
}
}
if (cmd->numobjs > 0) {
objs = make_unique<struct kgsl_command_object[]>(cmd->numobjs);
memcpy(objs.get(), (void *)cmd->objlist, sizeof(struct kgsl_command_object)*cmd->numobjs);
cache.objlist = (uint64_t)objs.get();
for (int i = 0; i < cmd->numobjs; i++) {
void *nn = thneed->ram->alloc(objs[i].size);
memset(nn, 0, objs[i].size);
objs[i].gpuaddr = (uint64_t)nn;
}
}
kq = thneed->ckq;
thneed->ckq.clear();
}
void CachedCommand::exec(bool wait) {
cache.timestamp = ++thneed->timestamp;
int ret = ioctl(thneed->fd, IOCTL_KGSL_GPU_COMMAND, &cache);
if (wait) {
struct kgsl_device_waittimestamp_ctxtid wait;
wait.context_id = cache.context_id;
wait.timestamp = cache.timestamp;
wait.timeout = -1;
uint64_t tb = nanos_since_boot();
int wret = ioctl(thneed->fd, IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID, &wait);
uint64_t te = nanos_since_boot();
if (thneed->record & THNEED_DEBUG) printf("exec %d wait %d after %lu us\n", ret, wret, (te-tb)/1000);
} else {
if (thneed->record & THNEED_DEBUG) printf("CachedCommand::exec got %d\n", ret);
}
if (thneed->record & THNEED_VERBOSE_DEBUG) {
for (auto &it : kq) {
it->debug_print(false);
}
#ifdef RUN_DISASSEMBLER
// assuming 2 commands
disassemble(0);
disassemble(1);
#endif
}
assert(ret == 0);
}
// *********** Thneed ***********
Thneed::Thneed(bool do_clinit) {
if (do_clinit) clinit();
assert(g_fd != -1);
fd = g_fd;
ram = make_unique<GPUMalloc>(0x40000, fd);
record = THNEED_RECORD;
timestamp = -1;
g_thneed = this;
}
void Thneed::stop() {
record = 0;
}
void Thneed::execute(float **finputs, float *foutput, bool slow) {
int ret;
uint64_t tb, te;
if (record & THNEED_DEBUG) tb = nanos_since_boot();
// ****** copy inputs
for (int idx = 0; idx < inputs.size(); ++idx) {
size_t sz;
clGetMemObjectInfo(inputs[idx], CL_MEM_SIZE, sizeof(sz), &sz, NULL);
if (record & THNEED_DEBUG) printf("copying %lu -- %p -> %p\n", sz, finputs[idx], inputs[idx]);
// TODO: This shouldn't have to block
clEnqueueWriteBuffer(command_queue, inputs[idx], CL_TRUE, 0, sz, finputs[idx], 0, NULL, NULL);
}
// ****** set power constraint
struct kgsl_device_constraint_pwrlevel pwrlevel;
pwrlevel.level = KGSL_CONSTRAINT_PWR_MAX;
struct kgsl_device_constraint constraint;
constraint.type = KGSL_CONSTRAINT_PWRLEVEL;
constraint.context_id = context_id;
constraint.data = (void*)&pwrlevel;
constraint.size = sizeof(pwrlevel);
struct kgsl_device_getproperty prop;
prop.type = KGSL_PROP_PWR_CONSTRAINT;
prop.value = (void*)&constraint;
prop.sizebytes = sizeof(constraint);
ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop);
assert(ret == 0);
// ****** run commands
int i = 0;
for (auto &it : cmds) {
++i;
if (record & THNEED_DEBUG) printf("run %2d @ %7lu us: ", i, (nanos_since_boot()-tb)/1000);
it->exec((i == cmds.size()) || slow);
}
// ****** sync objects
for (auto &it : syncobjs) {
struct kgsl_gpuobj_sync cmd;
cmd.objs = (uint64_t)it.data();
cmd.obj_len = it.length();
cmd.count = it.length() / sizeof(struct kgsl_gpuobj_sync_obj);
ret = ioctl(fd, IOCTL_KGSL_GPUOBJ_SYNC, &cmd);
assert(ret == 0);
}
// ****** copy outputs
if (output != NULL) {
size_t sz;
clGetMemObjectInfo(output, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
if (record & THNEED_DEBUG) printf("copying %lu for output %p -> %p\n", sz, output, foutput);
clEnqueueReadBuffer(command_queue, output, CL_TRUE, 0, sz, foutput, 0, NULL, NULL);
} else {
printf("CAUTION: model output is NULL, does it have no outputs?\n");
}
// ****** unset power constraint
constraint.type = KGSL_CONSTRAINT_NONE;
constraint.data = NULL;
constraint.size = 0;
ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop);
assert(ret == 0);
if (record & THNEED_DEBUG) {
te = nanos_since_boot();
printf("model exec in %lu us\n", (te-tb)/1000);
}
}
void Thneed::clinit() {
cl_int err;
cl_platform_id platform_id[2];
cl_uint num_devices;
cl_uint num_platforms;
err = clGetPlatformIDs(sizeof(platform_id)/sizeof(cl_platform_id), platform_id, &num_platforms);
assert(err == 0);
err = clGetDeviceIDs(platform_id[0], CL_DEVICE_TYPE_DEFAULT, 1, &device_id, &num_devices);
assert(err == 0);
context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &err);
assert(err == 0);
//cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, CL_QUEUE_PROFILING_ENABLE, 0};
cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0};
command_queue = clCreateCommandQueueWithProperties(context, device_id, props, &err);
assert(err == 0);
printf("Thneed::clinit done\n");
}
cl_int Thneed::clexec() {
printf("Thneed::clexec: running %lu queued kernels\n", kq.size());
for (auto &k : kq) {
if (record & THNEED_RECORD) ckq.push_back(k);
cl_int ret = k->exec();
assert(ret == CL_SUCCESS);
}
return clFinish(command_queue);
}
// *********** OpenCL interceptor ***********
cl_int thneed_clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) {
g_args_size[make_pair(kernel, arg_index)] = arg_size;
if (arg_value != NULL) {
g_args[make_pair(kernel, arg_index)] = string((char*)arg_value, arg_size);
} else {
g_args[make_pair(kernel, arg_index)] = string("");
}
cl_int ret = clSetKernelArg(kernel, arg_index, arg_size, arg_value);
return ret;
}
cl_int thneed_clEnqueueNDRangeKernel(cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event) {
Thneed *thneed = g_thneed;
// SNPE doesn't use these
assert(num_events_in_wait_list == 0);
assert(global_work_offset == NULL);
assert(event_wait_list == NULL);
cl_int ret = 0;
if (thneed != NULL && thneed->record & THNEED_RECORD) {
if (thneed->context == NULL) {
thneed->command_queue = command_queue;
clGetKernelInfo(kernel, CL_KERNEL_CONTEXT, sizeof(thneed->context), &thneed->context, NULL);
clGetContextInfo(thneed->context, CL_CONTEXT_DEVICES, sizeof(thneed->device_id), &thneed->device_id, NULL);
}
// if we are recording, we don't actually enqueue the kernel
thneed->kq.push_back(unique_ptr<CLQueuedKernel>(new CLQueuedKernel(thneed, kernel, work_dim, global_work_size, local_work_size)));
*event = NULL;
} else {
ret = clEnqueueNDRangeKernel(command_queue, kernel, work_dim,
global_work_offset, global_work_size, local_work_size,
num_events_in_wait_list, event_wait_list, event);
}
return ret;
}
cl_int thneed_clFinish(cl_command_queue command_queue) {
Thneed *thneed = g_thneed;
if (thneed != NULL && thneed->record & THNEED_RECORD) {
#ifdef RUN_OPTIMIZER
thneed->optimize();
#endif
return thneed->clexec();
} else {
return clFinish(command_queue);
}
}
cl_program thneed_clCreateProgramWithSource(cl_context context, cl_uint count, const char **strings, const size_t *lengths, cl_int *errcode_ret) {
assert(count == 1);
cl_program ret = clCreateProgramWithSource(context, count, strings, lengths, errcode_ret);
g_program_source[ret] = strings[0];
return ret;
}
void *dlsym(void *handle, const char *symbol) {
// TODO: Find dlsym in a better way. Currently this is hand looked up in libdl.so
#if defined QCOM
void *(*my_dlsym)(void *handle, const char *symbol) = (void *(*)(void *handle, const char *symbol))((uintptr_t)dlopen-0x2d4);
#elif defined QCOM2
void *(*my_dlsym)(void *handle, const char *symbol) = (void *(*)(void *handle, const char *symbol))((uintptr_t)dlopen+0x138);
#else
#error "Unsupported platform for thneed"
#endif
if (memcmp("REAL_", symbol, 5) == 0) {
return my_dlsym(handle, symbol+5);
} else if (strcmp("clFinish", symbol) == 0) {
return (void*)thneed_clFinish;
} else if (strcmp("clEnqueueNDRangeKernel", symbol) == 0) {
return (void*)thneed_clEnqueueNDRangeKernel;
} else if (strcmp("clSetKernelArg", symbol) == 0) {
return (void*)thneed_clSetKernelArg;
} else if (strcmp("clCreateProgramWithSource", symbol) == 0) {
return (void*)thneed_clCreateProgramWithSource;
} else {
return my_dlsym(handle, symbol);
}
}
// *********** CLQueuedKernel ***********
CLQueuedKernel::CLQueuedKernel(Thneed *lthneed,
cl_kernel _kernel,
cl_uint _work_dim,
const size_t *_global_work_size,
const size_t *_local_work_size) {
thneed = lthneed;
kernel = _kernel;
work_dim = _work_dim;
assert(work_dim <= 3);
for (int i = 0; i < work_dim; i++) {
global_work_size[i] = _global_work_size[i];
local_work_size[i] = _local_work_size[i];
}
char _name[0x100];
clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME, sizeof(_name), _name, NULL);
name = string(_name);
clGetKernelInfo(kernel, CL_KERNEL_NUM_ARGS, sizeof(num_args), &num_args, NULL);
// get args
for (int i = 0; i < num_args; i++) {
char arg_name[0x100];
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
arg_names.push_back(string(arg_name));
args.push_back(g_args[make_pair(kernel, i)]);
args_size.push_back(g_args_size[make_pair(kernel, i)]);
}
// get program
clGetKernelInfo(kernel, CL_KERNEL_PROGRAM, sizeof(program), &program, NULL);
}
int CLQueuedKernel::get_arg_num(const char *search_arg_name) {
for (int i = 0; i < num_args; i++) {
if (arg_names[i] == search_arg_name) return i;
}
printf("failed to find %s in %s\n", search_arg_name, name.c_str());
assert(false);
}
cl_int CLQueuedKernel::exec() {
if (kernel == NULL) {
kernel = clCreateKernel(program, name.c_str(), NULL);
arg_names.clear();
for (int j = 0; j < num_args; j++) {
char arg_name[0x100];
clGetKernelArgInfo(kernel, j, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
arg_names.push_back(string(arg_name));
cl_int ret;
if (args[j].size() != 0) {
assert(args[j].size() == args_size[j]);
ret = thneed_clSetKernelArg(kernel, j, args[j].size(), args[j].data());
} else {
ret = thneed_clSetKernelArg(kernel, j, args_size[j], NULL);
}
assert(ret == CL_SUCCESS);
}
}
// save the global inputs/outputs
if (thneed->record & THNEED_RECORD) {
for (int i = 0; i < num_args; i++) {
if (name == "zero_pad_image_float" && arg_names[i] == "input") {
thneed->inputs.push_back(*(cl_mem*)(args[i].data()));
}
if (name == "image2d_to_buffer_float" && arg_names[i] == "output") {
thneed->output = *(cl_mem*)(args[i].data());
}
}
}
if (thneed->record & THNEED_DEBUG) {
debug_print(thneed->record & THNEED_VERBOSE_DEBUG);
}
return clEnqueueNDRangeKernel(thneed->command_queue,
kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL);
}
void CLQueuedKernel::debug_print(bool verbose) {
printf("%p %56s -- ", kernel, name.c_str());
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", global_work_size[i]);
}
printf(" -- ");
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", local_work_size[i]);
}
printf("\n");
if (verbose) {
for (int i = 0; i < num_args; i++) {
char arg_type[0x100];
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_type), arg_type, NULL);
string arg = args[i];
printf(" %s %s", arg_type, arg_names[i].c_str());
void *arg_value = (void*)arg.data();
int arg_size = arg.size();
if (arg_size == 0) {
printf(" (size) %d", args_size[i]);
} else if (arg_size == 1) {
printf(" = %d", *((char*)arg_value));
} else if (arg_size == 2) {
printf(" = %d", *((short*)arg_value));
} else if (arg_size == 4) {
if (strcmp(arg_type, "float") == 0) {
printf(" = %f", *((float*)arg_value));
} else {
printf(" = %d", *((int*)arg_value));
}
} else if (arg_size == 8) {
cl_mem val = (cl_mem)(*((uintptr_t*)arg_value));
printf(" = %p", val);
if (val != NULL) {
if (strcmp("image2d_t", arg_type) == 0 || strcmp("image1d_t", arg_type) == 0) {
cl_image_format format;
size_t width, height, depth, array_size, row_pitch, slice_pitch;
cl_mem buf;
clGetImageInfo(val, CL_IMAGE_FORMAT, sizeof(format), &format, NULL);
assert(format.image_channel_order == CL_RGBA);
assert(format.image_channel_data_type == CL_HALF_FLOAT);
clGetImageInfo(val, CL_IMAGE_WIDTH, sizeof(width), &width, NULL);
clGetImageInfo(val, CL_IMAGE_HEIGHT, sizeof(height), &height, NULL);
clGetImageInfo(val, CL_IMAGE_ROW_PITCH, sizeof(row_pitch), &row_pitch, NULL);
clGetImageInfo(val, CL_IMAGE_DEPTH, sizeof(depth), &depth, NULL);
clGetImageInfo(val, CL_IMAGE_ARRAY_SIZE, sizeof(array_size), &array_size, NULL);
clGetImageInfo(val, CL_IMAGE_SLICE_PITCH, sizeof(slice_pitch), &slice_pitch, NULL);
assert(depth == 0);
assert(array_size == 0);
assert(slice_pitch == 0);
clGetImageInfo(val, CL_IMAGE_BUFFER, sizeof(buf), &buf, NULL);
size_t sz;
clGetMemObjectInfo(buf, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
printf(" image %zu x %zu rp %zu @ %p buffer %zu", width, height, row_pitch, buf, sz);
} else {
size_t sz;
clGetMemObjectInfo(val, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
printf(" buffer %zu", sz);
}
}
}
printf("\n");
}
}
}