import math
from cereal import log
from common . numpy_fast import interp
from selfdrive . controls . lib . latcontrol import LatControl , MIN_STEER_SPEED
from selfdrive . controls . lib . pid import PIDController
from selfdrive . controls . lib . vehicle_model import ACCELERATION_DUE_TO_GRAVITY
# At higher speeds (25+mph) we can assume:
# Lateral acceleration achieved by a specific car correlates to
# torque applied to the steering rack. It does not correlate to
# wheel slip, or to speed.
# This controller applies torque to achieve desired lateral
# accelerations. To compensate for the low speed effects we
# use a LOW_SPEED_FACTOR in the error. Additionally, there is
# friction in the steering wheel that needs to be overcome to
# move it at all, this is compensated for too.
LOW_SPEED_FACTOR = 200
JERK_THRESHOLD = 0.2
class LatControlTorque ( LatControl ) :
def __init__ ( self , CP , CI ) :
super ( ) . __init__ ( CP , CI )
self . pid = PIDController ( CP . lateralTuning . torque . kp , CP . lateralTuning . torque . ki ,
k_f = CP . lateralTuning . torque . kf , pos_limit = self . steer_max , neg_limit = - self . steer_max )
self . get_steer_feedforward = CI . get_steer_feedforward_function ( )
self . use_steering_angle = CP . lateralTuning . torque . useSteeringAngle
self . friction = CP . lateralTuning . torque . friction
self . kf = CP . lateralTuning . torque . kf
def reset ( self ) :
super ( ) . reset ( )
self . pid . reset ( )
def update ( self , active , CS , VM , params , last_actuators , desired_curvature , desired_curvature_rate , llk ) :
pid_log = log . ControlsState . LateralTorqueState . new_message ( )
if CS . vEgo < MIN_STEER_SPEED or not active :
output_torque = 0.0
pid_log . active = False
if not active :
self . pid . reset ( )
else :
if self . use_steering_angle :
actual_curvature = - VM . calc_curvature ( math . radians ( CS . steeringAngleDeg - params . angleOffsetDeg ) , CS . vEgo , params . roll )
else :
actual_curvature = llk . angularVelocityCalibrated . value [ 2 ] / CS . vEgo
desired_lateral_accel = desired_curvature * CS . vEgo * * 2
desired_lateral_jerk = desired_curvature_rate * CS . vEgo * * 2
actual_lateral_accel = actual_curvature * CS . vEgo * * 2
setpoint = desired_lateral_accel + LOW_SPEED_FACTOR * desired_curvature
measurement = actual_lateral_accel + LOW_SPEED_FACTOR * actual_curvature
error = setpoint - measurement
pid_log . error = error
ff = desired_lateral_accel - params . roll * ACCELERATION_DUE_TO_GRAVITY
# convert friction into lateral accel units for feedforward
friction_compensation = interp ( desired_lateral_jerk , [ - JERK_THRESHOLD , JERK_THRESHOLD ] , [ - self . friction , self . friction ] )
ff + = friction_compensation / self . kf
output_torque = self . pid . update ( error ,
override = CS . steeringPressed , feedforward = ff ,
speed = CS . vEgo ,
freeze_integrator = CS . steeringRateLimited )
pid_log . active = True
pid_log . p = self . pid . p
pid_log . i = self . pid . i
pid_log . d = self . pid . d
pid_log . f = self . pid . f
pid_log . output = - output_torque
pid_log . saturated = self . _check_saturation ( self . steer_max - abs ( output_torque ) < 1e-3 , CS )
pid_log . actualLateralAccel = actual_lateral_accel
pid_log . desiredLateralAccel = desired_lateral_accel
# TODO left is positive in this convention
return - output_torque , 0.0 , pid_log