You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
4.8 KiB
139 lines
4.8 KiB
8 months ago
|
#!/usr/bin/env python3
|
||
|
|
||
|
import sys
|
||
|
import numpy as np
|
||
|
|
||
|
from openpilot.selfdrive.locationd.models.constants import ObservationKind
|
||
|
|
||
|
if __name__=="__main__":
|
||
|
import sympy as sp
|
||
|
from rednose.helpers.ekf_sym import gen_code
|
||
|
from rednose.helpers.sympy_helpers import euler_rotate, rot_to_euler
|
||
|
else:
|
||
|
from rednose.helpers.ekf_sym_pyx import EKF_sym_pyx
|
||
|
|
||
|
EARTH_G = 9.81
|
||
|
|
||
|
|
||
|
class States:
|
||
|
NED_ORIENTATION = slice(0, 3) # roll, pitch, yaw in rad
|
||
|
DEVICE_VELOCITY = slice(3, 6) # ned velocity in m/s
|
||
|
ANGULAR_VELOCITY = slice(6, 9) # roll, pitch and yaw rates in rad/s
|
||
|
GYRO_BIAS = slice(9, 12) # roll, pitch and yaw gyroscope biases in rad/s
|
||
|
ACCELERATION = slice(12, 15) # acceleration in device frame in m/s**2
|
||
|
ACCEL_BIAS = slice(15, 18) # Acceletometer bias in m/s**2
|
||
|
|
||
|
|
||
|
class PoseKalman:
|
||
|
name = "pose"
|
||
|
|
||
|
# state
|
||
|
initial_x = np.array([0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0,
|
||
|
0.0, 0.0, 0.0])
|
||
|
# state covariance
|
||
|
initial_P = np.diag([0.01**2, 0.01**2, 0.01**2,
|
||
|
10**2, 10**2, 10**2,
|
||
|
1**2, 1**2, 1**2,
|
||
|
1**2, 1**2, 1**2,
|
||
|
100**2, 100**2, 100**2,
|
||
|
0.01**2, 0.01**2, 0.01**2])
|
||
|
|
||
|
# process noise
|
||
|
Q = np.diag([0.001**2, 0.001**2, 0.001**2,
|
||
|
0.01**2, 0.01**2, 0.01**2,
|
||
|
0.1**2, 0.1**2, 0.1**2,
|
||
|
(0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
|
||
|
3**2, 3**2, 3**2,
|
||
|
0.005**2, 0.005**2, 0.005**2])
|
||
|
|
||
|
obs_noise = {ObservationKind.PHONE_GYRO: np.array([0.025**2, 0.025**2, 0.025**2]),
|
||
|
ObservationKind.PHONE_ACCEL: np.array([.5**2, .5**2, .5**2]),
|
||
|
ObservationKind.CAMERA_ODO_TRANSLATION: np.array([0.5**2, 0.5**2, 0.5**2]),
|
||
|
ObservationKind.CAMERA_ODO_ROTATION: np.array([0.05**2, 0.05**2, 0.05**2])}
|
||
|
|
||
|
@staticmethod
|
||
|
def generate_code(generated_dir):
|
||
|
name = PoseKalman.name
|
||
|
dim_state = PoseKalman.initial_x.shape[0]
|
||
|
dim_state_err = PoseKalman.initial_P.shape[0]
|
||
|
|
||
|
state_sym = sp.MatrixSymbol('state', dim_state, 1)
|
||
|
state = sp.Matrix(state_sym)
|
||
|
roll, pitch, yaw = state[States.NED_ORIENTATION, :]
|
||
|
velocity = state[States.DEVICE_VELOCITY, :]
|
||
|
angular_velocity = state[States.ANGULAR_VELOCITY, :]
|
||
|
vroll, vpitch, vyaw = angular_velocity
|
||
|
gyro_bias = state[States.GYRO_BIAS, :]
|
||
|
acceleration = state[States.ACCELERATION, :]
|
||
|
acc_bias = state[States.ACCEL_BIAS, :]
|
||
|
|
||
|
dt = sp.Symbol('dt')
|
||
|
|
||
|
ned_from_device = euler_rotate(roll, pitch, yaw)
|
||
|
device_from_ned = ned_from_device.T
|
||
|
|
||
|
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
|
||
|
state_dot[States.DEVICE_VELOCITY, :] = acceleration
|
||
|
|
||
|
f_sym = state + dt * state_dot
|
||
|
device_from_device_t1 = euler_rotate(dt*vroll, dt*vpitch, dt*vyaw)
|
||
|
ned_from_device_t1 = ned_from_device * device_from_device_t1
|
||
|
f_sym[States.NED_ORIENTATION, :] = rot_to_euler(ned_from_device_t1)
|
||
|
|
||
|
centripetal_acceleration = angular_velocity.cross(velocity)
|
||
|
gravity = sp.Matrix([0, 0, -EARTH_G])
|
||
|
h_gyro_sym = angular_velocity + gyro_bias
|
||
|
h_acc_sym = device_from_ned * gravity + acceleration + centripetal_acceleration + acc_bias
|
||
|
h_phone_rot_sym = angular_velocity
|
||
|
h_relative_motion_sym = velocity
|
||
|
obs_eqs = [
|
||
|
[h_gyro_sym, ObservationKind.PHONE_GYRO, None],
|
||
|
[h_acc_sym, ObservationKind.PHONE_ACCEL, None],
|
||
|
[h_relative_motion_sym, ObservationKind.CAMERA_ODO_TRANSLATION, None],
|
||
|
[h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
|
||
|
]
|
||
|
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err)
|
||
|
|
||
|
def __init__(self, generated_dir, max_rewind_age):
|
||
|
dim_state, dim_state_err = PoseKalman.initial_x.shape[0], PoseKalman.initial_P.shape[0]
|
||
|
self.filter = EKF_sym_pyx(generated_dir, self.name, PoseKalman.Q, PoseKalman.initial_x, PoseKalman.initial_P,
|
||
|
dim_state, dim_state_err, max_rewind_age=max_rewind_age)
|
||
|
|
||
|
@property
|
||
|
def x(self):
|
||
|
return self.filter.state()
|
||
|
|
||
|
@property
|
||
|
def P(self):
|
||
|
return self.filter.covs()
|
||
|
|
||
|
@property
|
||
|
def t(self):
|
||
|
return self.filter.get_filter_time()
|
||
|
|
||
|
def predict_and_observe(self, t, kind, data, obs_noise=None):
|
||
|
data = np.atleast_2d(data)
|
||
|
if obs_noise is None:
|
||
|
obs_noise = self.obs_noise[kind]
|
||
|
R = self._get_R(len(data), obs_noise)
|
||
|
return self.filter.predict_and_update_batch(t, kind, data, R)
|
||
|
|
||
|
def reset(self, t, x_init, P_init):
|
||
|
self.filter.init_state(x_init, P_init, t)
|
||
|
|
||
|
def _get_R(self, n, obs_noise):
|
||
|
dim = obs_noise.shape[0]
|
||
|
R = np.zeros((n, dim, dim))
|
||
|
for i in range(n):
|
||
|
R[i, :, :] = np.diag(obs_noise)
|
||
|
return R
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
generated_dir = sys.argv[2]
|
||
|
PoseKalman.generate_code(generated_dir)
|