# include <cassert>
# include "common/swaglog.h"
# include "system/camerad/cameras/camera_common.h"
# include "system/camerad/cameras/camera_qcom2.h"
# include "system/camerad/sensors/sensor.h"
namespace {
const size_t AR0231_REGISTERS_HEIGHT = 2 ;
// TODO: this extra height is universal and doesn't apply per camera
const size_t AR0231_STATS_HEIGHT = 2 + 8 ;
const float sensor_analog_gains_AR0231 [ ] = {
1.0 / 8.0 , 2.0 / 8.0 , 2.0 / 7.0 , 3.0 / 7.0 , // 0, 1, 2, 3
3.0 / 6.0 , 4.0 / 6.0 , 4.0 / 5.0 , 5.0 / 5.0 , // 4, 5, 6, 7
5.0 / 4.0 , 6.0 / 4.0 , 6.0 / 3.0 , 7.0 / 3.0 , // 8, 9, 10, 11
7.0 / 2.0 , 8.0 / 2.0 , 8.0 / 1.0 } ; // 12, 13, 14, 15 = bypass
std : : map < uint16_t , std : : pair < int , int > > ar0231_build_register_lut ( CameraState * c , uint8_t * data ) {
// This function builds a lookup table from register address, to a pair of indices in the
// buffer where to read this address. The buffer contains padding bytes,
// as well as markers to indicate the type of the next byte.
//
// 0xAA is used to indicate the MSB of the address, 0xA5 for the LSB of the address.
// Every byte of data (MSB and LSB) is preceded by 0x5A. Specifying an address is optional
// for contiguous ranges. See page 27-29 of the AR0231 Developer guide for more information.
int max_i [ ] = { 1828 / 2 * 3 , 1500 / 2 * 3 } ;
auto get_next_idx = [ ] ( int cur_idx ) {
return ( cur_idx % 3 = = 1 ) ? cur_idx + 2 : cur_idx + 1 ; // Every third byte is padding
} ;
std : : map < uint16_t , std : : pair < int , int > > registers ;
for ( int register_row = 0 ; register_row < 2 ; register_row + + ) {
uint8_t * registers_raw = data + c - > ci - > frame_stride * register_row ;
assert ( registers_raw [ 0 ] = = 0x0a ) ; // Start of line
int value_tag_count = 0 ;
int first_val_idx = 0 ;
uint16_t cur_addr = 0 ;
for ( int i = 1 ; i < = max_i [ register_row ] ; i = get_next_idx ( get_next_idx ( i ) ) ) {
int val_idx = get_next_idx ( i ) ;
uint8_t tag = registers_raw [ i ] ;
uint16_t val = registers_raw [ val_idx ] ;
if ( tag = = 0xAA ) { // Register MSB tag
cur_addr = val < < 8 ;
} else if ( tag = = 0xA5 ) { // Register LSB tag
cur_addr | = val ;
cur_addr - = 2 ; // Next value tag will increment address again
} else if ( tag = = 0x5A ) { // Value tag
// First tag
if ( value_tag_count % 2 = = 0 ) {
cur_addr + = 2 ;
first_val_idx = val_idx ;
} else {
registers [ cur_addr ] = std : : make_pair ( first_val_idx + c - > ci - > frame_stride * register_row , val_idx + c - > ci - > frame_stride * register_row ) ;
}
value_tag_count + + ;
}
}
}
return registers ;
}
float ar0231_parse_temp_sensor ( uint16_t calib1 , uint16_t calib2 , uint16_t data_reg ) {
// See AR0231 Developer Guide - page 36
float slope = ( 125.0 - 55.0 ) / ( ( float ) calib1 - ( float ) calib2 ) ;
float t0 = 55.0 - slope * ( float ) calib2 ;
return t0 + slope * ( float ) data_reg ;
}
} // namespace
AR0231 : : AR0231 ( ) {
image_sensor = cereal : : FrameData : : ImageSensor : : AR0231 ;
data_word = true ;
frame_width = FRAME_WIDTH ;
frame_height = FRAME_HEIGHT ;
frame_stride = FRAME_STRIDE ;
extra_height = AR0231_REGISTERS_HEIGHT + AR0231_STATS_HEIGHT ;
registers_offset = 0 ;
frame_offset = AR0231_REGISTERS_HEIGHT ;
stats_offset = AR0231_REGISTERS_HEIGHT + FRAME_HEIGHT ;
start_reg_array . assign ( std : : begin ( start_reg_array_ar0231 ) , std : : end ( start_reg_array_ar0231 ) ) ;
init_reg_array . assign ( std : : begin ( init_array_ar0231 ) , std : : end ( init_array_ar0231 ) ) ;
probe_reg_addr = 0x3000 ;
probe_expected_data = 0x354 ;
in_port_info_dt = 0x12 ; // Changing stats to 0x2C doesn't work, so change pixels to 0x12 instead
power_config_val_low = 19200000 ; //Hz
dc_gain_factor = 2.5 ;
dc_gain_min_weight = 0 ;
dc_gain_max_weight = 1 ;
dc_gain_on_grey = 0.2 ;
dc_gain_off_grey = 0.3 ;
exposure_time_min = 2 ; // with HDR, fastest ss
exposure_time_max = 0x0855 ; // with HDR, slowest ss, 40ms
analog_gain_min_idx = 0x1 ; // 0.25x
analog_gain_rec_idx = 0x6 ; // 0.8x
analog_gain_max_idx = 0xD ; // 4.0x
analog_gain_cost_delta = 0 ;
analog_gain_cost_low = 0.1 ;
analog_gain_cost_high = 5.0 ;
for ( int i = 0 ; i < = analog_gain_max_idx ; i + + ) {
sensor_analog_gains [ i ] = sensor_analog_gains_AR0231 [ i ] ;
}
min_ev = exposure_time_min * sensor_analog_gains [ analog_gain_min_idx ] ;
max_ev = exposure_time_max * dc_gain_factor * sensor_analog_gains [ analog_gain_max_idx ] ;
target_grey_factor = 1.0 ;
}
void AR0231 : : processRegisters ( CameraState * c , cereal : : FrameData : : Builder & framed ) const {
const uint8_t expected_preamble [ ] = { 0x0a , 0xaa , 0x55 , 0x20 , 0xa5 , 0x55 } ;
uint8_t * data = ( uint8_t * ) c - > buf . cur_camera_buf - > addr + c - > ci - > registers_offset ;
if ( memcmp ( data , expected_preamble , std : : size ( expected_preamble ) ) ! = 0 ) {
LOGE ( " unexpected register data found " ) ;
return ;
}
if ( ar0231_register_lut . empty ( ) ) {
ar0231_register_lut = ar0231_build_register_lut ( c , data ) ;
}
std : : map < uint16_t , uint16_t > registers ;
for ( uint16_t addr : { 0x2000 , 0x2002 , 0x20b0 , 0x20b2 , 0x30c6 , 0x30c8 , 0x30ca , 0x30cc } ) {
auto offset = ar0231_register_lut [ addr ] ;
registers [ addr ] = ( ( uint16_t ) data [ offset . first ] < < 8 ) | data [ offset . second ] ;
}
uint32_t frame_id = ( ( uint32_t ) registers [ 0x2000 ] < < 16 ) | registers [ 0x2002 ] ;
framed . setFrameIdSensor ( frame_id ) ;
float temp_0 = ar0231_parse_temp_sensor ( registers [ 0x30c6 ] , registers [ 0x30c8 ] , registers [ 0x20b0 ] ) ;
float temp_1 = ar0231_parse_temp_sensor ( registers [ 0x30ca ] , registers [ 0x30cc ] , registers [ 0x20b2 ] ) ;
framed . setTemperaturesC ( { temp_0 , temp_1 } ) ;
}
std : : vector < i2c_random_wr_payload > AR0231 : : getExposureRegisters ( int exposure_time , int new_exp_g , bool dc_gain_enabled ) const {
uint16_t analog_gain_reg = 0xFF00 | ( new_exp_g < < 4 ) | new_exp_g ;
return {
{ 0x3366 , analog_gain_reg } ,
{ 0x3362 , ( uint16_t ) ( dc_gain_enabled ? 0x1 : 0x0 ) } ,
{ 0x3012 , ( uint16_t ) exposure_time } ,
} ;
}
int AR0231 : : getSlaveAddress ( int port ) const {
assert ( port > = 0 & & port < = 2 ) ;
return ( int [ ] ) { 0x20 , 0x30 , 0x20 } [ port ] ;
}
float AR0231 : : getExposureScore ( float desired_ev , int exp_t , int exp_g_idx , float exp_gain , int gain_idx ) const {
// Cost of ev diff
float score = std : : abs ( desired_ev - ( exp_t * exp_gain ) ) * 10 ;
// Cost of absolute gain
float m = exp_g_idx > analog_gain_rec_idx ? analog_gain_cost_high : analog_gain_cost_low ;
score + = std : : abs ( exp_g_idx - ( int ) analog_gain_rec_idx ) * m ;
// Cost of changing gain
score + = std : : abs ( exp_g_idx - gain_idx ) * ( score + 1.0 ) / 10.0 ;
return score ;
}