You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					546 lines
				
				23 KiB
			
		
		
			
		
	
	
					546 lines
				
				23 KiB
			| 
											4 years ago
										 | # cython: language_level=3
 | ||
|  | # cython: profile=False
 | ||
|  | # distutils: language = c
 | ||
|  | 
 | ||
|  | # -*- coding: future_fstrings -*-
 | ||
|  | #
 | ||
|  | # Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
 | ||
|  | # Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
 | ||
|  | # Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
 | ||
|  | # Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
 | ||
|  | #
 | ||
|  | # This file is part of acados.
 | ||
|  | #
 | ||
|  | # The 2-Clause BSD License
 | ||
|  | #
 | ||
|  | # Redistribution and use in source and binary forms, with or without
 | ||
|  | # modification, are permitted provided that the following conditions are met:
 | ||
|  | #
 | ||
|  | # 1. Redistributions of source code must retain the above copyright notice,
 | ||
|  | # this list of conditions and the following disclaimer.
 | ||
|  | #
 | ||
|  | # 2. Redistributions in binary form must reproduce the above copyright notice,
 | ||
|  | # this list of conditions and the following disclaimer in the documentation
 | ||
|  | # and/or other materials provided with the distribution.
 | ||
|  | #
 | ||
|  | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | ||
|  | # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | ||
|  | # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | ||
|  | # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | ||
|  | # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | ||
|  | # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | ||
|  | # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | ||
|  | # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | ||
|  | # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | ||
|  | # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | ||
|  | # POSSIBILITY OF SUCH DAMAGE.;
 | ||
|  | #
 | ||
|  | 
 | ||
|  | cimport cython
 | ||
|  | 
 | ||
|  | from libc cimport string
 | ||
|  | from libc cimport bool
 | ||
|  | 
 | ||
|  | cimport numpy as np
 | ||
|  | from cpython cimport array
 | ||
|  | 
 | ||
|  | cimport acados_solver_common
 | ||
|  | cimport acados_solver
 | ||
|  | 
 | ||
|  | import os
 | ||
|  | import json
 | ||
|  | import numpy as np
 | ||
|  | import array
 | ||
|  | from datetime import datetime
 | ||
|  | 
 | ||
|  | # from .utils import np_array_to_list
 | ||
|  | 
 | ||
|  | 
 | ||
|  | cdef class AcadosOcpSolverFast:
 | ||
|  |     """
 | ||
|  |     Class to interact with the acados ocp solver C object.
 | ||
|  | 
 | ||
|  |         :param acados_ocp: type AcadosOcp - description of the OCP for acados
 | ||
|  |         :param json_file: name for the json file used to render the templated code - default: acados_ocp_nlp.json
 | ||
|  |         :param simulink_opts: Options to configure Simulink S-function blocks, mainly to activate possible Inputs and Outputs
 | ||
|  |     """
 | ||
|  | 
 | ||
|  |     cdef acados_solver.nlp_solver_capsule *capsule
 | ||
|  |     cdef void *nlp_opts
 | ||
|  |     cdef acados_solver_common.ocp_nlp_dims *nlp_dims
 | ||
|  |     cdef acados_solver_common.ocp_nlp_config *nlp_config
 | ||
|  |     cdef acados_solver_common.ocp_nlp_out *nlp_out
 | ||
|  |     cdef acados_solver_common.ocp_nlp_in *nlp_in
 | ||
|  |     cdef acados_solver_common.ocp_nlp_solver *nlp_solver
 | ||
|  | 
 | ||
|  |     cdef str model_name
 | ||
|  |     cdef int N
 | ||
|  |     cdef bint solver_created
 | ||
|  | 
 | ||
|  |     def __cinit__(self, str model_name, int N, str code_export_dir):
 | ||
|  |         self.model_name = model_name
 | ||
|  |         self.N = N
 | ||
|  | 
 | ||
|  |         self.solver_created = False
 | ||
|  | 
 | ||
|  |         # create capsule
 | ||
|  |         self.capsule = acados_solver.acados_create_capsule()
 | ||
|  | 
 | ||
|  |         # create solver
 | ||
|  |         assert acados_solver.acados_create(self.capsule) == 0
 | ||
|  |         self.solver_created = True
 | ||
|  | 
 | ||
|  |         # get pointers solver
 | ||
|  |         self.nlp_opts = acados_solver.acados_get_nlp_opts(self.capsule)
 | ||
|  |         self.nlp_dims = acados_solver.acados_get_nlp_dims(self.capsule)
 | ||
|  |         self.nlp_config = acados_solver.acados_get_nlp_config(self.capsule)
 | ||
|  |         self.nlp_out = acados_solver.acados_get_nlp_out(self.capsule)
 | ||
|  |         self.nlp_in = acados_solver.acados_get_nlp_in(self.capsule)
 | ||
|  |         self.nlp_solver = acados_solver.acados_get_nlp_solver(self.capsule)
 | ||
|  | 
 | ||
|  |     def solve(self):
 | ||
|  |         """
 | ||
|  |         Solve the ocp with current input.
 | ||
|  |         """
 | ||
|  | 
 | ||
|  |         status = acados_solver.acados_solve(self.capsule)
 | ||
|  |         return status
 | ||
|  | 
 | ||
|  |     def get_slice(self, int start_stage_, int end_stage_, str field_):
 | ||
|  |         field = field_.encode('utf-8')
 | ||
|  |         dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, start_stage_, field)
 | ||
|  |         out = np.ascontiguousarray(np.zeros((end_stage_ - start_stage_, dims)), dtype=np.float64)
 | ||
|  |         self.fill_in_slice(start_stage_, end_stage_, field_, out)
 | ||
|  |         return out
 | ||
|  | 
 | ||
|  |     def fill_in_slice(self, int start_stage_, int end_stage_, str field_, np.ndarray[np.float64_t, ndim=2, mode='c'] arr_):
 | ||
|  |         out_fields = ['x', 'u', 'z', 'pi', 'lam', 't']
 | ||
|  |         mem_fields = ['sl', 'su']
 | ||
|  | 
 | ||
|  |         field = field_.encode('utf-8')
 | ||
|  | 
 | ||
|  |         if (field_ not in out_fields + mem_fields):
 | ||
|  |             raise Exception('AcadosOcpSolver.get_slice(): {} is an invalid argument.\
 | ||
|  |                     \n Possible values are {}. Exiting.'.format(field_, out_fields))
 | ||
|  | 
 | ||
|  |         if start_stage_ >= end_stage_:
 | ||
|  |             raise Exception('AcadosOcpSolver.get_slice(): end stage index must be larger than start stage index')
 | ||
|  | 
 | ||
|  |         if start_stage_ < 0 or end_stage_ > self.N + 1:
 | ||
|  |             raise Exception('AcadosOcpSolver.get_slice(): stage index must be in [0, N], got: {}.'.format(self.N))
 | ||
|  | 
 | ||
|  |         cdef np.ndarray[np.float64_t, ndim=2, mode='c'] arr = np.ascontiguousarray(arr_, dtype=np.double)
 | ||
|  | 
 | ||
|  |         if (field_ in out_fields):
 | ||
|  |             acados_solver_common.ocp_nlp_out_get_slice(self.nlp_config, self.nlp_dims, self.nlp_out, start_stage_, end_stage_,
 | ||
|  |                 field, <double *> arr.data)
 | ||
|  |         elif field_ in mem_fields:
 | ||
|  |             raise NotImplementedError()
 | ||
|  |         #     acados_solver_common.ocp_nlp_get_at_stage(self.nlp_config, self.nlp_dims, self.nlp_solver, start_stage_, end_stage_,
 | ||
|  |         #         field, <double *> arr.data)
 | ||
|  | 
 | ||
|  |     def get(self, stage_, field_):
 | ||
|  |         return self.get_slice(stage_, stage_ + 1, field_)[0]
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def print_statistics(self):
 | ||
|  |         """
 | ||
|  |         prints statistics of previous solver run as a table:
 | ||
|  |             - iter: iteration number
 | ||
|  |             - res_stat: stationarity residual
 | ||
|  |             - res_eq: residual wrt equality constraints (dynamics)
 | ||
|  |             - res_ineq: residual wrt inequality constraints (constraints)
 | ||
|  |             - res_comp: residual wrt complementarity conditions
 | ||
|  |             - qp_stat: status of QP solver
 | ||
|  |             - qp_iter: number of QP iterations
 | ||
|  |             - qp_res_stat: stationarity residual of the last QP solution
 | ||
|  |             - qp_res_eq: residual wrt equality constraints (dynamics) of the last QP solution
 | ||
|  |             - qp_res_ineq: residual wrt inequality constraints (constraints)  of the last QP solution
 | ||
|  |             - qp_res_comp: residual wrt complementarity conditions of the last QP solution
 | ||
|  |         """
 | ||
|  |         stat = self.get_stats("statistics")
 | ||
|  | 
 | ||
|  |         if self.acados_ocp.solver_options.nlp_solver_type == 'SQP':
 | ||
|  |             print('\niter\tres_stat\tres_eq\t\tres_ineq\tres_comp\tqp_stat\tqp_iter')
 | ||
|  |             if stat.shape[0]>7:
 | ||
|  |                 print('\tqp_res_stat\tqp_res_eq\tqp_res_ineq\tqp_res_comp')
 | ||
|  |             for jj in range(stat.shape[1]):
 | ||
|  |                 print('{:d}\t{:e}\t{:e}\t{:e}\t{:e}\t{:d}\t{:d}'.format( \
 | ||
|  |                      int(stat[0][jj]), stat[1][jj], stat[2][jj], \
 | ||
|  |                      stat[3][jj], stat[4][jj], int(stat[5][jj]), int(stat[6][jj])))
 | ||
|  |                 if stat.shape[0]>7:
 | ||
|  |                     print('\t{:e}\t{:e}\t{:e}\t{:e}'.format( \
 | ||
|  |                         stat[7][jj], stat[8][jj], stat[9][jj], stat[10][jj]))
 | ||
|  |             print('\n')
 | ||
|  |         elif self.acados_ocp.solver_options.nlp_solver_type == 'SQP_RTI':
 | ||
|  |             print('\niter\tqp_stat\tqp_iter')
 | ||
|  |             if stat.shape[0]>3:
 | ||
|  |                 print('\tqp_res_stat\tqp_res_eq\tqp_res_ineq\tqp_res_comp')
 | ||
|  |             for jj in range(stat.shape[1]):
 | ||
|  |                 print('{:d}\t{:d}\t{:d}'.format( int(stat[0][jj]), int(stat[1][jj]), int(stat[2][jj])))
 | ||
|  |                 if stat.shape[0]>3:
 | ||
|  |                     print('\t{:e}\t{:e}\t{:e}\t{:e}'.format( \
 | ||
|  |                          stat[3][jj], stat[4][jj], stat[5][jj], stat[6][jj]))
 | ||
|  |             print('\n')
 | ||
|  | 
 | ||
|  |         return
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def store_iterate(self, filename='', overwrite=False):
 | ||
|  |         """
 | ||
|  |         Stores the current iterate of the ocp solver in a json file.
 | ||
|  | 
 | ||
|  |             :param filename: if not set, use model_name + timestamp + '.json'
 | ||
|  |             :param overwrite: if false and filename exists add timestamp to filename
 | ||
|  |         """
 | ||
|  |         if filename == '':
 | ||
|  |             filename += self.model_name + '_' + 'iterate' + '.json'
 | ||
|  | 
 | ||
|  |         if not overwrite:
 | ||
|  |             # append timestamp
 | ||
|  |             if os.path.isfile(filename):
 | ||
|  |                 filename = filename[:-5]
 | ||
|  |                 filename += datetime.utcnow().strftime('%Y-%m-%d-%H:%M:%S.%f') + '.json'
 | ||
|  | 
 | ||
|  |         # get iterate:
 | ||
|  |         solution = dict()
 | ||
|  | 
 | ||
|  |         for i in range(self.N+1):
 | ||
|  |             solution['x_'+str(i)] = self.get(i,'x')
 | ||
|  |             solution['u_'+str(i)] = self.get(i,'u')
 | ||
|  |             solution['z_'+str(i)] = self.get(i,'z')
 | ||
|  |             solution['lam_'+str(i)] = self.get(i,'lam')
 | ||
|  |             solution['t_'+str(i)] = self.get(i, 't')
 | ||
|  |             solution['sl_'+str(i)] = self.get(i, 'sl')
 | ||
|  |             solution['su_'+str(i)] = self.get(i, 'su')
 | ||
|  |         for i in range(self.N):
 | ||
|  |             solution['pi_'+str(i)] = self.get(i,'pi')
 | ||
|  | 
 | ||
|  |         # save
 | ||
|  |         raise NotImplementedError()
 | ||
|  |         # with open(filename, 'w') as f:
 | ||
|  |         #     json.dump(solution, f, default=np_array_to_list, indent=4, sort_keys=True)
 | ||
|  |         # print("stored current iterate in ", os.path.join(os.getcwd(), filename))
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def load_iterate(self, filename):
 | ||
|  |         """
 | ||
|  |         Loads the iterate stored in json file with filename into the ocp solver.
 | ||
|  |         """
 | ||
|  |         if not os.path.isfile(filename):
 | ||
|  |             raise Exception('load_iterate: failed, file does not exist: ' + os.path.join(os.getcwd(), filename))
 | ||
|  | 
 | ||
|  |         with open(filename, 'r') as f:
 | ||
|  |             solution = json.load(f)
 | ||
|  | 
 | ||
|  |         for key in solution.keys():
 | ||
|  |             (field, stage) = key.split('_')
 | ||
|  |             self.set(int(stage), field, np.array(solution[key]))
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def get_stats(self, field_):
 | ||
|  |         """
 | ||
|  |         Get the information of the last solver call.
 | ||
|  | 
 | ||
|  |             :param field: string in ['statistics', 'time_tot', 'time_lin', 'time_sim', 'time_sim_ad', 'time_sim_la', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter']
 | ||
|  |         """
 | ||
|  | 
 | ||
|  |         fields = ['time_tot',  # total cpu time previous call
 | ||
|  |                   'time_lin',  # cpu time for linearization
 | ||
|  |                   'time_sim',  # cpu time for integrator
 | ||
|  |                   'time_sim_ad',  # cpu time for integrator contribution of external function calls
 | ||
|  |                   'time_sim_la',  # cpu time for integrator contribution of linear algebra
 | ||
|  |                   'time_qp',   # cpu time qp solution
 | ||
|  |                   'time_qp_solver_call',  # cpu time inside qp solver (without converting the QP)
 | ||
|  |                   'time_qp_xcond',
 | ||
|  |                   'time_glob',  # cpu time globalization
 | ||
|  |                   'time_reg',  # cpu time regularization
 | ||
|  |                   'sqp_iter',  # number of SQP iterations
 | ||
|  |                   'qp_iter',  # vector of QP iterations for last SQP call
 | ||
|  |                   'statistics',  # table with info about last iteration
 | ||
|  |                   'stat_m',
 | ||
|  |                   'stat_n',]
 | ||
|  | 
 | ||
|  |         field = field_
 | ||
|  |         field = field.encode('utf-8')
 | ||
|  |         if (field_ not in fields):
 | ||
|  |             raise Exception('AcadosOcpSolver.get_stats(): {} is not a valid argument.\
 | ||
|  |                     \n Possible values are {}. Exiting.'.format(fields, fields))
 | ||
|  | 
 | ||
|  |         if field_ in ['sqp_iter', 'stat_m', 'stat_n']:
 | ||
|  |             out = np.ascontiguousarray(np.zeros((1,)), dtype=np.int64)
 | ||
|  |             out_data = out.data
 | ||
|  | 
 | ||
|  |         elif field_ == 'statistics':
 | ||
|  |             sqp_iter = self.get_stats("sqp_iter")
 | ||
|  |             stat_m = self.get_stats("stat_m")
 | ||
|  |             stat_n = self.get_stats("stat_n")
 | ||
|  | 
 | ||
|  |             min_size = min([stat_m, sqp_iter+1])
 | ||
|  | 
 | ||
|  |             out = np.ascontiguousarray(np.zeros((stat_n[0]+1, min_size[0])), dtype=np.float64)
 | ||
|  |             out_data = out.data
 | ||
|  | 
 | ||
|  |         elif field_ == 'qp_iter':
 | ||
|  |             full_stats = self.get_stats('statistics')
 | ||
|  |             if self.acados_ocp.solver_options.nlp_solver_type == 'SQP':
 | ||
|  |                 out = full_stats[6, :]
 | ||
|  |             elif self.acados_ocp.solver_options.nlp_solver_type == 'SQP_RTI':
 | ||
|  |                 out = full_stats[2, :]
 | ||
|  | 
 | ||
|  |         else:
 | ||
|  |             out = np.ascontiguousarray(np.zeros((1,)), dtype=np.float64)
 | ||
|  |             out_data = out.data
 | ||
|  | 
 | ||
|  |         if not field_ == 'qp_iter':
 | ||
|  |             acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out_data)
 | ||
|  | 
 | ||
|  |         return out
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def get_cost(self):
 | ||
|  |         """
 | ||
|  |         Returns the cost value of the current solution.
 | ||
|  |         """
 | ||
|  |         # compute cost internally
 | ||
|  |         acados_solver_common.ocp_nlp_eval_cost(self.nlp_solver, self.nlp_in, self.nlp_out)
 | ||
|  | 
 | ||
|  |         # create output array
 | ||
|  |         out = np.ascontiguousarray(np.zeros((1,)), dtype=np.float64)
 | ||
|  | 
 | ||
|  |         # call getter
 | ||
|  |         field = "cost_value".encode('utf-8')
 | ||
|  |         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out.data)
 | ||
|  | 
 | ||
|  |         return out[0]
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def get_residuals(self):
 | ||
|  |         """
 | ||
|  |         Returns an array of the form [res_stat, res_eq, res_ineq, res_comp].
 | ||
|  |         """
 | ||
|  |         # compute residuals if RTI
 | ||
|  |         if self.acados_ocp.solver_options.nlp_solver_type == 'SQP_RTI':
 | ||
|  |             acados_solver_common.ocp_nlp_eval_residuals(self.nlp_solver, self.nlp_in, self.nlp_out)
 | ||
|  | 
 | ||
|  |         # create output array
 | ||
|  |         out = np.ascontiguousarray(np.zeros((4, 1)), dtype=np.float64)
 | ||
|  | 
 | ||
|  |         # call getters
 | ||
|  |         field = "res_stat".encode('utf-8')
 | ||
|  |         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out.data)
 | ||
|  | 
 | ||
|  |         field = "res_eq".encode('utf-8')
 | ||
|  |         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out[1].data)
 | ||
|  | 
 | ||
|  |         field = "res_ineq".encode('utf-8')
 | ||
|  |         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out[2].data)
 | ||
|  | 
 | ||
|  |         field = "res_comp".encode('utf-8')
 | ||
|  |         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out[3].data)
 | ||
|  |         return out.flatten()
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     # Note: this function should not be used anymore, better use cost_set, constraints_set
 | ||
|  | 
 | ||
|  |     def set(self, int stage, str field_, value_):
 | ||
|  | 
 | ||
|  |         """
 | ||
|  |         Set numerical data inside the solver.
 | ||
|  | 
 | ||
|  |             :param stage: integer corresponding to shooting node
 | ||
|  |             :param field: string in ['x', 'u', 'pi', 'lam', 't', 'p']
 | ||
|  | 
 | ||
|  |             .. note:: regarding lam, t: \n
 | ||
|  |                     the inequalities are internally organized in the following order: \n
 | ||
|  |                     [ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
 | ||
|  |                       lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
 | ||
|  | 
 | ||
|  |             .. note:: pi: multipliers for dynamics equality constraints \n
 | ||
|  |                       lam: multipliers for inequalities \n
 | ||
|  |                       t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
 | ||
|  |                       sl: slack variables of soft lower inequality constraints \n
 | ||
|  |                       su: slack variables of soft upper inequality constraints \n
 | ||
|  |         """
 | ||
|  |         cost_fields = ['y_ref', 'yref']
 | ||
|  |         constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu']
 | ||
|  |         out_fields = ['x', 'u', 'pi', 'lam', 't', 'z']
 | ||
|  |         mem_fields = ['sl', 'su']
 | ||
|  | 
 | ||
|  |         # cast value_ to avoid conversion issues
 | ||
|  |         if isinstance(value_, (float, int)):
 | ||
|  |             value_ = np.array([value_])
 | ||
|  |         value_ = value_.astype(np.double)
 | ||
|  | 
 | ||
|  |         field = field_
 | ||
|  |         field = field.encode('utf-8')
 | ||
|  | 
 | ||
|  |         if field_ not in constraints_fields + cost_fields + out_fields + mem_fields:
 | ||
|  |             raise Exception("AcadosOcpSolver.set(): {} is not a valid argument.\
 | ||
|  |                 \nPossible values are {}. Exiting.".format(field, \
 | ||
|  |                 constraints_fields + cost_fields + out_fields + ['p']))
 | ||
|  | 
 | ||
|  |         dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, stage, field)
 | ||
|  | 
 | ||
|  |         if value_.shape[0] != dims:
 | ||
|  |             msg = 'AcadosOcpSolver.set(): mismatching dimension for field "{}" '.format(field_)
 | ||
|  |             msg += 'with dimension {} (you have {})'.format(dims, value_.shape)
 | ||
|  |             raise Exception(msg)
 | ||
|  | 
 | ||
|  |         cdef np.ndarray[np.float64_t, ndim=1, mode='c'] value = np.ascontiguousarray(value_, dtype=np.double)
 | ||
|  | 
 | ||
|  |         value_data_p = <void *> value.data
 | ||
|  |         if field_ in constraints_fields:
 | ||
|  |             acados_solver_common.ocp_nlp_constraints_model_set(self.nlp_config, self.nlp_dims, self.nlp_in, stage, field, value_data_p)
 | ||
|  |         elif field_ in cost_fields:
 | ||
|  |             acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config, self.nlp_dims, self.nlp_in, stage, field, value_data_p)
 | ||
|  |         elif field_ in out_fields:
 | ||
|  |             acados_solver_common.ocp_nlp_out_set(self.nlp_config, self.nlp_dims, self.nlp_out, stage, field, value_data_p)
 | ||
|  |         elif field_ in mem_fields:
 | ||
|  |             acados_solver_common.ocp_nlp_set(self.nlp_config, self.nlp_solver, stage, field, value_data_p)
 | ||
|  |         return
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def set_param(self, stage_, np.ndarray[np.float64_t, ndim=1] value_):
 | ||
|  |         cdef np.ndarray[np.float64_t, ndim=1, mode='c'] value = np.ascontiguousarray(value_, dtype=np.double)
 | ||
|  |         acados_solver.acados_update_params(self.capsule, stage_, <double *> value_.data, value_.shape[0])
 | ||
|  | 
 | ||
|  |     def cost_set(self, start_stage_, field_, value_, api='warn'):
 | ||
|  |       self.cost_set_slice(start_stage_, start_stage_+1, field_, value_[None], api='warn')
 | ||
|  | 
 | ||
|  |     def cost_set_slice(self, start_stage_, end_stage_, field_, value_, api='warn'):
 | ||
|  |         """
 | ||
|  |         Set numerical data in the cost module of the solver.
 | ||
|  | 
 | ||
|  |             :param stage: integer corresponding to shooting node
 | ||
|  |             :param field: string, e.g. 'yref', 'W', 'ext_cost_num_hess'
 | ||
|  |             :param value: of appropriate size
 | ||
|  |         """
 | ||
|  |         # cast value_ to avoid conversion issues
 | ||
|  |         field = field_.encode('utf-8')
 | ||
|  |         if len(value_.shape) > 2:
 | ||
|  |           dim = value_.shape[1]*value_.shape[2]
 | ||
|  |         else:
 | ||
|  |           dim = value_.shape[1]
 | ||
|  |           value_ = value_[None,:,:]
 | ||
|  | 
 | ||
|  |         cdef np.ndarray[np.float64_t, ndim=3, mode='c'] value = np.ascontiguousarray(value_, dtype=np.double)
 | ||
|  | 
 | ||
|  |         acados_solver_common.ocp_nlp_cost_model_set_slice(self.nlp_config, self.nlp_dims, self.nlp_in, start_stage_, end_stage_,
 | ||
|  |             field, <void *> value.data, dim)
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def constraints_set(self, start_stage_, field_, value_, api='warn'):
 | ||
|  |       self.constraints_set_slice(start_stage_, start_stage_+1, field_, value_[None], api='warn')
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def constraints_set_slice(self, start_stage_, end_stage_, field_, value_, api='warn'):
 | ||
|  |         """
 | ||
|  |         Set numerical data in the constraint module of the solver.
 | ||
|  | 
 | ||
|  |             :param stage: integer corresponding to shooting node
 | ||
|  |             :param field: string in ['lbx', 'ubx', 'lbu', 'ubu', 'lg', 'ug', 'lh', 'uh', 'uphi']
 | ||
|  |             :param value: of appropriate size
 | ||
|  |         """
 | ||
|  | 
 | ||
|  |         field = field_.encode('utf-8')
 | ||
|  |         if len(value_.shape) > 2:
 | ||
|  |           dim = value_.shape[1]*value_.shape[2]
 | ||
|  |         else:
 | ||
|  |           dim = value_.shape[1]
 | ||
|  |           value_ = value_[None,:,:]
 | ||
|  | 
 | ||
|  |         cdef np.ndarray[np.float64_t, ndim=3, mode='c'] value = np.ascontiguousarray(value_, dtype=np.double)
 | ||
|  | 
 | ||
|  |         acados_solver_common.ocp_nlp_constraints_model_set_slice(self.nlp_config, self.nlp_dims, self.nlp_in, start_stage_, end_stage_,
 | ||
|  |             field, <void*> value.data, dim)
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def dynamics_get(self, int stage, field_):
 | ||
|  |         """
 | ||
|  |         Get numerical data from the dynamics module of the solver:
 | ||
|  | 
 | ||
|  |             :param stage: integer corresponding to shooting node
 | ||
|  |             :param field: string, e.g. 'A'
 | ||
|  |         """
 | ||
|  | 
 | ||
|  |         field = field_
 | ||
|  |         field = field.encode('utf-8')
 | ||
|  | 
 | ||
|  |         # get dims
 | ||
|  |         cdef int[2] dims
 | ||
|  |         acados_solver_common.ocp_nlp_dynamics_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, stage, field, &dims[0])
 | ||
|  | 
 | ||
|  |         # create output data
 | ||
|  |         out = np.ascontiguousarray(np.zeros((dims[0]*dims[1],)), dtype=np.float64)
 | ||
|  |         out = out.reshape(dims[0], dims[1], order='F')
 | ||
|  | 
 | ||
|  |         # call getter
 | ||
|  |         acados_solver_common.ocp_nlp_get_at_stage(self.nlp_config, self.nlp_dims, self.nlp_solver, stage, field, <void *> out.data)
 | ||
|  | 
 | ||
|  |         return out
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def options_set(self, bytes field_, value_):
 | ||
|  |         """
 | ||
|  |         Set options of the solver.
 | ||
|  | 
 | ||
|  |             :param field: string, e.g. 'print_level', 'rti_phase', 'initialize_t_slacks', 'step_length', 'alpha_min', 'alpha_reduction'
 | ||
|  |             :param value: of type int, float
 | ||
|  |         """
 | ||
|  |         int_fields = ['print_level', 'rti_phase', 'initialize_t_slacks']
 | ||
|  |         double_fields = ['step_length', 'tol_eq', 'tol_stat', 'tol_ineq', 'tol_comp', 'alpha_min', 'alpha_reduction']
 | ||
|  |         string_fields = ['globalization']
 | ||
|  | 
 | ||
|  |         # encode
 | ||
|  |         field = field_
 | ||
|  |         field = field.encode('utf-8')
 | ||
|  | 
 | ||
|  |         cdef int int_value
 | ||
|  |         cdef double double_value
 | ||
|  |         cdef unsigned char[:] string_value
 | ||
|  | 
 | ||
|  |         # check field availability and type
 | ||
|  |         if field_ in int_fields:
 | ||
|  |             if not isinstance(value_, int):
 | ||
|  |                 raise Exception('solver option {} must be of type int. You have {}.'.format(field_, type(value_)))
 | ||
|  | 
 | ||
|  |             if field_ == 'rti_phase':
 | ||
|  |                 if value_ < 0 or value_ > 2:
 | ||
|  |                     raise Exception('AcadosOcpSolver.solve(): argument \'rti_phase\' can '
 | ||
|  |                         'take only values 0, 1, 2 for SQP-RTI-type solvers')
 | ||
|  |                 if self.acados_ocp.solver_options.nlp_solver_type != 'SQP_RTI' and value_ > 0:
 | ||
|  |                     raise Exception('AcadosOcpSolver.solve(): argument \'rti_phase\' can '
 | ||
|  |                         'take only value 0 for SQP-type solvers')
 | ||
|  | 
 | ||
|  |             int_value = value_
 | ||
|  |             acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &int_value)
 | ||
|  | 
 | ||
|  |         elif field_ in double_fields:
 | ||
|  |             if not isinstance(value_, float):
 | ||
|  |                 raise Exception('solver option {} must be of type float. You have {}.'.format(field_, type(value_)))
 | ||
|  | 
 | ||
|  |             double_value = value_
 | ||
|  |             acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &double_value)
 | ||
|  | 
 | ||
|  |         elif field_ in string_fields:
 | ||
|  |             if not isinstance(value_, bytes):
 | ||
|  |                 raise Exception('solver option {} must be of type str. You have {}.'.format(field_, type(value_)))
 | ||
|  | 
 | ||
|  |             string_value = value_.encode('utf-8')
 | ||
|  |             acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &string_value[0])
 | ||
|  | 
 | ||
|  |         raise Exception('AcadosOcpSolver.options_set() does not support field {}.'\
 | ||
|  |             '\n Possible values are {}.'.format(field_, ', '.join(int_fields + double_fields + string_fields)))
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def __del__(self):
 | ||
|  |         if self.solver_created:
 | ||
|  |             acados_solver.acados_free(self.capsule)
 | ||
|  |             acados_solver.acados_free_capsule(self.capsule)
 | ||
|  | 
 | ||
|  |             # try:
 | ||
|  |             #     self.dlclose(self.shared_lib._handle)
 | ||
|  |             # except:
 | ||
|  |             #     pass
 |