You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					1275 lines
				
				51 KiB
			
		
		
			
		
	
	
					1275 lines
				
				51 KiB
			| 
											6 years ago
										 | // Copyright (c) 2013-2016 Sandstorm Development Group, Inc. and contributors
 | ||
|  | // Licensed under the MIT License:
 | ||
|  | //
 | ||
|  | // Permission is hereby granted, free of charge, to any person obtaining a copy
 | ||
|  | // of this software and associated documentation files (the "Software"), to deal
 | ||
|  | // in the Software without restriction, including without limitation the rights
 | ||
|  | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | ||
|  | // copies of the Software, and to permit persons to whom the Software is
 | ||
|  | // furnished to do so, subject to the following conditions:
 | ||
|  | //
 | ||
|  | // The above copyright notice and this permission notice shall be included in
 | ||
|  | // all copies or substantial portions of the Software.
 | ||
|  | //
 | ||
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | ||
|  | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | ||
|  | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | ||
|  | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | ||
|  | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | ||
|  | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | ||
|  | // THE SOFTWARE.
 | ||
|  | 
 | ||
|  | // This file is NOT intended for use by clients, except in generated code.
 | ||
|  | //
 | ||
|  | // This file defines low-level, non-type-safe classes for traversing the Cap'n Proto memory layout
 | ||
|  | // (which is also its wire format).  Code generated by the Cap'n Proto compiler uses these classes,
 | ||
|  | // as does other parts of the Cap'n proto library which provide a higher-level interface for
 | ||
|  | // dynamic introspection.
 | ||
|  | 
 | ||
|  | #ifndef CAPNP_LAYOUT_H_
 | ||
|  | #define CAPNP_LAYOUT_H_
 | ||
|  | 
 | ||
|  | #if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
 | ||
|  | #pragma GCC system_header
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <kj/common.h>
 | ||
|  | #include <kj/memory.h>
 | ||
|  | #include "common.h"
 | ||
|  | #include "blob.h"
 | ||
|  | #include "endian.h"
 | ||
|  | 
 | ||
|  | #if (defined(__mips__) || defined(__hppa__)) && !defined(CAPNP_CANONICALIZE_NAN)
 | ||
|  | #define CAPNP_CANONICALIZE_NAN 1
 | ||
|  | // Explicitly detect NaNs and canonicalize them to the quiet NaN value as would be returned by
 | ||
|  | // __builtin_nan("") on systems implementing the IEEE-754 recommended (but not required) NaN
 | ||
|  | // signalling/quiet differentiation (such as x86).  Unfortunately, some architectures -- in
 | ||
|  | // particular, MIPS -- represent quiet vs. signalling nans differently than the rest of the world.
 | ||
|  | // Canonicalizing them makes output consistent (which is important!), but hurts performance
 | ||
|  | // slightly.
 | ||
|  | //
 | ||
|  | // Note that trying to convert MIPS NaNs to standard NaNs without losing data doesn't work.
 | ||
|  | // Signaling vs. quiet is indicated by a bit, with the meaning being the opposite on MIPS vs.
 | ||
|  | // everyone else.  It would be great if we could just flip that bit, but we can't, because if the
 | ||
|  | // significand is all-zero, then the value is infinity rather than NaN.  This means that on most
 | ||
|  | // machines, where the bit indicates quietness, there is one more quiet NaN value than signalling
 | ||
|  | // NaN value, whereas on MIPS there is one more sNaN than qNaN, and thus there is no isomorphic
 | ||
|  | // mapping that properly preserves quietness.  Instead of doing something hacky, we just give up
 | ||
|  | // and blow away NaN payloads, because no one uses them anyway.
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | namespace capnp {
 | ||
|  | 
 | ||
|  | #if !CAPNP_LITE
 | ||
|  | class ClientHook;
 | ||
|  | #endif  // !CAPNP_LITE
 | ||
|  | 
 | ||
|  | namespace _ {  // private
 | ||
|  | 
 | ||
|  | class PointerBuilder;
 | ||
|  | class PointerReader;
 | ||
|  | class StructBuilder;
 | ||
|  | class StructReader;
 | ||
|  | class ListBuilder;
 | ||
|  | class ListReader;
 | ||
|  | class OrphanBuilder;
 | ||
|  | struct WirePointer;
 | ||
|  | struct WireHelpers;
 | ||
|  | class SegmentReader;
 | ||
|  | class SegmentBuilder;
 | ||
|  | class Arena;
 | ||
|  | class BuilderArena;
 | ||
|  | 
 | ||
|  | // =============================================================================
 | ||
|  | 
 | ||
|  | #if CAPNP_DEBUG_TYPES
 | ||
|  | typedef kj::UnitRatio<kj::Bounded<64, uint>, BitLabel, ElementLabel> BitsPerElementTableType;
 | ||
|  | #else
 | ||
|  | typedef uint BitsPerElementTableType;
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static constexpr BitsPerElementTableType BITS_PER_ELEMENT_TABLE[8] = {
 | ||
|  |   bounded< 0>() * BITS / ELEMENTS,
 | ||
|  |   bounded< 1>() * BITS / ELEMENTS,
 | ||
|  |   bounded< 8>() * BITS / ELEMENTS,
 | ||
|  |   bounded<16>() * BITS / ELEMENTS,
 | ||
|  |   bounded<32>() * BITS / ELEMENTS,
 | ||
|  |   bounded<64>() * BITS / ELEMENTS,
 | ||
|  |   bounded< 0>() * BITS / ELEMENTS,
 | ||
|  |   bounded< 0>() * BITS / ELEMENTS
 | ||
|  | };
 | ||
|  | 
 | ||
|  | inline KJ_CONSTEXPR() BitsPerElementTableType dataBitsPerElement(ElementSize size) {
 | ||
|  |   return _::BITS_PER_ELEMENT_TABLE[static_cast<int>(size)];
 | ||
|  | }
 | ||
|  | 
 | ||
|  | inline constexpr PointersPerElementN<1> pointersPerElement(ElementSize size) {
 | ||
|  |   return size == ElementSize::POINTER
 | ||
|  |       ? PointersPerElementN<1>(ONE * POINTERS / ELEMENTS)
 | ||
|  |       : PointersPerElementN<1>(ZERO * POINTERS / ELEMENTS);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | static constexpr BitsPerElementTableType BITS_PER_ELEMENT_INCLUDING_PONITERS_TABLE[8] = {
 | ||
|  |   bounded< 0>() * BITS / ELEMENTS,
 | ||
|  |   bounded< 1>() * BITS / ELEMENTS,
 | ||
|  |   bounded< 8>() * BITS / ELEMENTS,
 | ||
|  |   bounded<16>() * BITS / ELEMENTS,
 | ||
|  |   bounded<32>() * BITS / ELEMENTS,
 | ||
|  |   bounded<64>() * BITS / ELEMENTS,
 | ||
|  |   bounded<64>() * BITS / ELEMENTS,
 | ||
|  |   bounded< 0>() * BITS / ELEMENTS
 | ||
|  | };
 | ||
|  | 
 | ||
|  | inline KJ_CONSTEXPR() BitsPerElementTableType bitsPerElementIncludingPointers(ElementSize size) {
 | ||
|  |   return _::BITS_PER_ELEMENT_INCLUDING_PONITERS_TABLE[static_cast<int>(size)];
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <size_t size> struct ElementSizeForByteSize;
 | ||
|  | template <> struct ElementSizeForByteSize<1> { static constexpr ElementSize value = ElementSize::BYTE; };
 | ||
|  | template <> struct ElementSizeForByteSize<2> { static constexpr ElementSize value = ElementSize::TWO_BYTES; };
 | ||
|  | template <> struct ElementSizeForByteSize<4> { static constexpr ElementSize value = ElementSize::FOUR_BYTES; };
 | ||
|  | template <> struct ElementSizeForByteSize<8> { static constexpr ElementSize value = ElementSize::EIGHT_BYTES; };
 | ||
|  | 
 | ||
|  | template <typename T> struct ElementSizeForType {
 | ||
|  |   static constexpr ElementSize value =
 | ||
|  |       // Primitive types that aren't special-cased below can be determined from sizeof().
 | ||
|  |       CAPNP_KIND(T) == Kind::PRIMITIVE ? ElementSizeForByteSize<sizeof(T)>::value :
 | ||
|  |       CAPNP_KIND(T) == Kind::ENUM ? ElementSize::TWO_BYTES :
 | ||
|  |       CAPNP_KIND(T) == Kind::STRUCT ? ElementSize::INLINE_COMPOSITE :
 | ||
|  | 
 | ||
|  |       // Everything else is a pointer.
 | ||
|  |       ElementSize::POINTER;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | // Void and bool are special.
 | ||
|  | template <> struct ElementSizeForType<Void> { static constexpr ElementSize value = ElementSize::VOID; };
 | ||
|  | template <> struct ElementSizeForType<bool> { static constexpr ElementSize value = ElementSize::BIT; };
 | ||
|  | 
 | ||
|  | // Lists and blobs are pointers, not structs.
 | ||
|  | template <typename T, Kind K> struct ElementSizeForType<List<T, K>> {
 | ||
|  |   static constexpr ElementSize value = ElementSize::POINTER;
 | ||
|  | };
 | ||
|  | template <> struct ElementSizeForType<Text> {
 | ||
|  |   static constexpr ElementSize value = ElementSize::POINTER;
 | ||
|  | };
 | ||
|  | template <> struct ElementSizeForType<Data> {
 | ||
|  |   static constexpr ElementSize value = ElementSize::POINTER;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline constexpr ElementSize elementSizeForType() {
 | ||
|  |   return ElementSizeForType<T>::value;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | struct MessageSizeCounts {
 | ||
|  |   WordCountN<61, uint64_t> wordCount;  // 2^64 bytes
 | ||
|  |   uint capCount;
 | ||
|  | 
 | ||
|  |   MessageSizeCounts& operator+=(const MessageSizeCounts& other) {
 | ||
|  |     // OK to truncate unchecked because this class is used to count actual stuff in memory, and
 | ||
|  |     // we couldn't possibly have anywhere near 2^61 words.
 | ||
|  |     wordCount = assumeBits<61>(wordCount + other.wordCount);
 | ||
|  |     capCount += other.capCount;
 | ||
|  |     return *this;
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   void addWords(WordCountN<61, uint64_t> other) {
 | ||
|  |     wordCount = assumeBits<61>(wordCount + other);
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   MessageSize asPublic() {
 | ||
|  |     return MessageSize { unbound(wordCount / WORDS), capCount };
 | ||
|  |   }
 | ||
|  | };
 | ||
|  | 
 | ||
|  | // =============================================================================
 | ||
|  | 
 | ||
|  | template <int wordCount>
 | ||
|  | union AlignedData {
 | ||
|  |   // Useful for declaring static constant data blobs as an array of bytes, but forcing those
 | ||
|  |   // bytes to be word-aligned.
 | ||
|  | 
 | ||
|  |   uint8_t bytes[wordCount * sizeof(word)];
 | ||
|  |   word words[wordCount];
 | ||
|  | };
 | ||
|  | 
 | ||
|  | struct StructSize {
 | ||
|  |   StructDataWordCount data;
 | ||
|  |   StructPointerCount pointers;
 | ||
|  | 
 | ||
|  |   inline constexpr WordCountN<17> total() const { return data + pointers * WORDS_PER_POINTER; }
 | ||
|  | 
 | ||
|  |   StructSize() = default;
 | ||
|  |   inline constexpr StructSize(StructDataWordCount data, StructPointerCount pointers)
 | ||
|  |       : data(data), pointers(pointers) {}
 | ||
|  | };
 | ||
|  | 
 | ||
|  | template <typename T, typename CapnpPrivate = typename T::_capnpPrivate>
 | ||
|  | inline constexpr StructSize structSize() {
 | ||
|  |   return StructSize(bounded(CapnpPrivate::dataWordSize) * WORDS,
 | ||
|  |                     bounded(CapnpPrivate::pointerCount) * POINTERS);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T, typename CapnpPrivate = typename T::_capnpPrivate,
 | ||
|  |           typename = kj::EnableIf<CAPNP_KIND(T) == Kind::STRUCT>>
 | ||
|  | inline constexpr StructSize minStructSizeForElement() {
 | ||
|  |   // If T is a struct, return its struct size. Otherwise return the minimum struct size big enough
 | ||
|  |   // to hold a T.
 | ||
|  | 
 | ||
|  |   return StructSize(bounded(CapnpPrivate::dataWordSize) * WORDS,
 | ||
|  |                     bounded(CapnpPrivate::pointerCount) * POINTERS);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T, typename = kj::EnableIf<CAPNP_KIND(T) != Kind::STRUCT>>
 | ||
|  | inline constexpr StructSize minStructSizeForElement() {
 | ||
|  |   // If T is a struct, return its struct size. Otherwise return the minimum struct size big enough
 | ||
|  |   // to hold a T.
 | ||
|  | 
 | ||
|  |   return StructSize(
 | ||
|  |       dataBitsPerElement(elementSizeForType<T>()) * ELEMENTS > ZERO * BITS
 | ||
|  |           ? StructDataWordCount(ONE * WORDS) : StructDataWordCount(ZERO * WORDS),
 | ||
|  |       pointersPerElement(elementSizeForType<T>()) * ELEMENTS);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | // Masking of default values
 | ||
|  | 
 | ||
|  | template <typename T, Kind kind = CAPNP_KIND(T)> struct Mask_;
 | ||
|  | template <typename T> struct Mask_<T, Kind::PRIMITIVE> { typedef T Type; };
 | ||
|  | template <typename T> struct Mask_<T, Kind::ENUM> { typedef uint16_t Type; };
 | ||
|  | template <> struct Mask_<float, Kind::PRIMITIVE> { typedef uint32_t Type; };
 | ||
|  | template <> struct Mask_<double, Kind::PRIMITIVE> { typedef uint64_t Type; };
 | ||
|  | 
 | ||
|  | template <typename T> struct Mask_<T, Kind::OTHER> {
 | ||
|  |   // Union discriminants end up here.
 | ||
|  |   static_assert(sizeof(T) == 2, "Don't know how to mask this type.");
 | ||
|  |   typedef uint16_t Type;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | using Mask = typename Mask_<T>::Type;
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | KJ_ALWAYS_INLINE(Mask<T> mask(T value, Mask<T> mask));
 | ||
|  | template <typename T>
 | ||
|  | KJ_ALWAYS_INLINE(T unmask(Mask<T> value, Mask<T> mask));
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline Mask<T> mask(T value, Mask<T> mask) {
 | ||
|  |   return static_cast<Mask<T> >(value) ^ mask;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline uint32_t mask<float>(float value, uint32_t mask) {
 | ||
|  | #if CAPNP_CANONICALIZE_NAN
 | ||
|  |   if (value != value) {
 | ||
|  |     return 0x7fc00000u ^ mask;
 | ||
|  |   }
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   uint32_t i;
 | ||
|  |   static_assert(sizeof(i) == sizeof(value), "float is not 32 bits?");
 | ||
|  |   memcpy(&i, &value, sizeof(value));
 | ||
|  |   return i ^ mask;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline uint64_t mask<double>(double value, uint64_t mask) {
 | ||
|  | #if CAPNP_CANONICALIZE_NAN
 | ||
|  |   if (value != value) {
 | ||
|  |     return 0x7ff8000000000000ull ^ mask;
 | ||
|  |   }
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   uint64_t i;
 | ||
|  |   static_assert(sizeof(i) == sizeof(value), "double is not 64 bits?");
 | ||
|  |   memcpy(&i, &value, sizeof(value));
 | ||
|  |   return i ^ mask;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline T unmask(Mask<T> value, Mask<T> mask) {
 | ||
|  |   return static_cast<T>(value ^ mask);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline float unmask<float>(uint32_t value, uint32_t mask) {
 | ||
|  |   value ^= mask;
 | ||
|  |   float result;
 | ||
|  |   static_assert(sizeof(result) == sizeof(value), "float is not 32 bits?");
 | ||
|  |   memcpy(&result, &value, sizeof(value));
 | ||
|  |   return result;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline double unmask<double>(uint64_t value, uint64_t mask) {
 | ||
|  |   value ^= mask;
 | ||
|  |   double result;
 | ||
|  |   static_assert(sizeof(result) == sizeof(value), "double is not 64 bits?");
 | ||
|  |   memcpy(&result, &value, sizeof(value));
 | ||
|  |   return result;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | class CapTableReader {
 | ||
|  | public:
 | ||
|  | #if !CAPNP_LITE
 | ||
|  |   virtual kj::Maybe<kj::Own<ClientHook>> extractCap(uint index) = 0;
 | ||
|  |   // Extract the capability at the given index.  If the index is invalid, returns null.
 | ||
|  | #endif  // !CAPNP_LITE
 | ||
|  | };
 | ||
|  | 
 | ||
|  | class CapTableBuilder: public CapTableReader {
 | ||
|  | public:
 | ||
|  | #if !CAPNP_LITE
 | ||
|  |   virtual uint injectCap(kj::Own<ClientHook>&& cap) = 0;
 | ||
|  |   // Add the capability to the message and return its index.  If the same ClientHook is injected
 | ||
|  |   // twice, this may return the same index both times, but in this case dropCap() needs to be
 | ||
|  |   // called an equal number of times to actually remove the cap.
 | ||
|  | 
 | ||
|  |   virtual void dropCap(uint index) = 0;
 | ||
|  |   // Remove a capability injected earlier.  Called when the pointer is overwritten or zero'd out.
 | ||
|  | #endif  // !CAPNP_LITE
 | ||
|  | };
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | class PointerBuilder: public kj::DisallowConstCopy {
 | ||
|  |   // Represents a single pointer, usually embedded in a struct or a list.
 | ||
|  | 
 | ||
|  | public:
 | ||
|  |   inline PointerBuilder(): segment(nullptr), capTable(nullptr), pointer(nullptr) {}
 | ||
|  | 
 | ||
|  |   static inline PointerBuilder getRoot(
 | ||
|  |       SegmentBuilder* segment, CapTableBuilder* capTable, word* location);
 | ||
|  |   // Get a PointerBuilder representing a message root located in the given segment at the given
 | ||
|  |   // location.
 | ||
|  | 
 | ||
|  |   inline bool isNull() { return getPointerType() == PointerType::NULL_; }
 | ||
|  |   PointerType getPointerType() const;
 | ||
|  | 
 | ||
|  |   StructBuilder getStruct(StructSize size, const word* defaultValue);
 | ||
|  |   ListBuilder getList(ElementSize elementSize, const word* defaultValue);
 | ||
|  |   ListBuilder getStructList(StructSize elementSize, const word* defaultValue);
 | ||
|  |   ListBuilder getListAnySize(const word* defaultValue);
 | ||
|  |   template <typename T> typename T::Builder getBlob(
 | ||
|  |       const void* defaultValue, ByteCount defaultSize);
 | ||
|  | #if !CAPNP_LITE
 | ||
|  |   kj::Own<ClientHook> getCapability();
 | ||
|  | #endif  // !CAPNP_LITE
 | ||
|  |   // Get methods:  Get the value.  If it is null, initialize it to a copy of the default value.
 | ||
|  |   // The default value is encoded as an "unchecked message" for structs, lists, and objects, or a
 | ||
|  |   // simple byte array for blobs.
 | ||
|  | 
 | ||
|  |   StructBuilder initStruct(StructSize size);
 | ||
|  |   ListBuilder initList(ElementSize elementSize, ElementCount elementCount);
 | ||
|  |   ListBuilder initStructList(ElementCount elementCount, StructSize size);
 | ||
|  |   template <typename T> typename T::Builder initBlob(ByteCount size);
 | ||
|  |   // Init methods:  Initialize the pointer to a newly-allocated object, discarding the existing
 | ||
|  |   // object.
 | ||
|  | 
 | ||
|  |   void setStruct(const StructReader& value, bool canonical = false);
 | ||
|  |   void setList(const ListReader& value, bool canonical = false);
 | ||
|  |   template <typename T> void setBlob(typename T::Reader value);
 | ||
|  | #if !CAPNP_LITE
 | ||
|  |   void setCapability(kj::Own<ClientHook>&& cap);
 | ||
|  | #endif  // !CAPNP_LITE
 | ||
|  |   // Set methods:  Initialize the pointer to a newly-allocated copy of the given value, discarding
 | ||
|  |   // the existing object.
 | ||
|  | 
 | ||
|  |   void adopt(OrphanBuilder&& orphan);
 | ||
|  |   // Set the pointer to point at the given orphaned value.
 | ||
|  | 
 | ||
|  |   OrphanBuilder disown();
 | ||
|  |   // Set the pointer to null and return its previous value as an orphan.
 | ||
|  | 
 | ||
|  |   void clear();
 | ||
|  |   // Clear the pointer to null, discarding its previous value.
 | ||
|  | 
 | ||
|  |   void transferFrom(PointerBuilder other);
 | ||
|  |   // Equivalent to `adopt(other.disown())`.
 | ||
|  | 
 | ||
|  |   void copyFrom(PointerReader other, bool canonical = false);
 | ||
|  |   // Equivalent to `set(other.get())`.
 | ||
|  |   // If you set the canonical flag, it will attempt to lay the target out
 | ||
|  |   // canonically, provided enough space is available.
 | ||
|  | 
 | ||
|  |   PointerReader asReader() const;
 | ||
|  | 
 | ||
|  |   BuilderArena* getArena() const;
 | ||
|  |   // Get the arena containing this pointer.
 | ||
|  | 
 | ||
|  |   CapTableBuilder* getCapTable();
 | ||
|  |   // Gets the capability context in which this object is operating.
 | ||
|  | 
 | ||
|  |   PointerBuilder imbue(CapTableBuilder* capTable);
 | ||
|  |   // Return a copy of this builder except using the given capability context.
 | ||
|  | 
 | ||
|  | private:
 | ||
|  |   SegmentBuilder* segment;     // Memory segment in which the pointer resides.
 | ||
|  |   CapTableBuilder* capTable;   // Table of capability indexes.
 | ||
|  |   WirePointer* pointer;        // Pointer to the pointer.
 | ||
|  | 
 | ||
|  |   inline PointerBuilder(SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* pointer)
 | ||
|  |       : segment(segment), capTable(capTable), pointer(pointer) {}
 | ||
|  | 
 | ||
|  |   friend class StructBuilder;
 | ||
|  |   friend class ListBuilder;
 | ||
|  |   friend class OrphanBuilder;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | class PointerReader {
 | ||
|  | public:
 | ||
|  |   inline PointerReader()
 | ||
|  |       : segment(nullptr), capTable(nullptr), pointer(nullptr), nestingLimit(0x7fffffff) {}
 | ||
|  | 
 | ||
|  |   static PointerReader getRoot(SegmentReader* segment, CapTableReader* capTable,
 | ||
|  |                                const word* location, int nestingLimit);
 | ||
|  |   // Get a PointerReader representing a message root located in the given segment at the given
 | ||
|  |   // location.
 | ||
|  | 
 | ||
|  |   static inline PointerReader getRootUnchecked(const word* location);
 | ||
|  |   // Get a PointerReader for an unchecked message.
 | ||
|  | 
 | ||
|  |   MessageSizeCounts targetSize() const;
 | ||
|  |   // Return the total size of the target object and everything to which it points.  Does not count
 | ||
|  |   // far pointer overhead.  This is useful for deciding how much space is needed to copy the object
 | ||
|  |   // into a flat array.  However, the caller is advised NOT to treat this value as secure.  Instead,
 | ||
|  |   // use the result as a hint for allocating the first segment, do the copy, and then throw an
 | ||
|  |   // exception if it overruns.
 | ||
|  | 
 | ||
|  |   inline bool isNull() const { return getPointerType() == PointerType::NULL_; }
 | ||
|  |   PointerType getPointerType() const;
 | ||
|  | 
 | ||
|  |   StructReader getStruct(const word* defaultValue) const;
 | ||
|  |   ListReader getList(ElementSize expectedElementSize, const word* defaultValue) const;
 | ||
|  |   ListReader getListAnySize(const word* defaultValue) const;
 | ||
|  |   template <typename T>
 | ||
|  |   typename T::Reader getBlob(const void* defaultValue, ByteCount defaultSize) const;
 | ||
|  | #if !CAPNP_LITE
 | ||
|  |   kj::Own<ClientHook> getCapability() const;
 | ||
|  | #endif  // !CAPNP_LITE
 | ||
|  |   // Get methods:  Get the value.  If it is null, return the default value instead.
 | ||
|  |   // The default value is encoded as an "unchecked message" for structs, lists, and objects, or a
 | ||
|  |   // simple byte array for blobs.
 | ||
|  | 
 | ||
|  |   const word* getUnchecked() const;
 | ||
|  |   // If this is an unchecked message, get a word* pointing at the location of the pointer.  This
 | ||
|  |   // word* can actually be passed to readUnchecked() to read the designated sub-object later.  If
 | ||
|  |   // this isn't an unchecked message, throws an exception.
 | ||
|  | 
 | ||
|  |   kj::Maybe<Arena&> getArena() const;
 | ||
|  |   // Get the arena containing this pointer.
 | ||
|  | 
 | ||
|  |   CapTableReader* getCapTable();
 | ||
|  |   // Gets the capability context in which this object is operating.
 | ||
|  | 
 | ||
|  |   PointerReader imbue(CapTableReader* capTable) const;
 | ||
|  |   // Return a copy of this reader except using the given capability context.
 | ||
|  | 
 | ||
|  |   bool isCanonical(const word **readHead);
 | ||
|  |   // Validate this pointer's canonicity, subject to the conditions:
 | ||
|  |   // * All data to the left of readHead has been read thus far (for pointer
 | ||
|  |   //   ordering)
 | ||
|  |   // * All pointers in preorder have already been checked
 | ||
|  |   // * This pointer is in the first and only segment of the message
 | ||
|  | 
 | ||
|  | private:
 | ||
|  |   SegmentReader* segment;      // Memory segment in which the pointer resides.
 | ||
|  |   CapTableReader* capTable;    // Table of capability indexes.
 | ||
|  |   const WirePointer* pointer;  // Pointer to the pointer.  null = treat as null pointer.
 | ||
|  | 
 | ||
|  |   int nestingLimit;
 | ||
|  |   // Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
 | ||
|  |   // Once this reaches zero, further pointers will be pruned.
 | ||
|  | 
 | ||
|  |   inline PointerReader(SegmentReader* segment, CapTableReader* capTable,
 | ||
|  |                        const WirePointer* pointer, int nestingLimit)
 | ||
|  |       : segment(segment), capTable(capTable), pointer(pointer), nestingLimit(nestingLimit) {}
 | ||
|  | 
 | ||
|  |   friend class StructReader;
 | ||
|  |   friend class ListReader;
 | ||
|  |   friend class PointerBuilder;
 | ||
|  |   friend class OrphanBuilder;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | class StructBuilder: public kj::DisallowConstCopy {
 | ||
|  | public:
 | ||
|  |   inline StructBuilder(): segment(nullptr), capTable(nullptr), data(nullptr), pointers(nullptr) {}
 | ||
|  | 
 | ||
|  |   inline word* getLocation() { return reinterpret_cast<word*>(data); }
 | ||
|  |   // Get the object's location.  Only valid for independently-allocated objects (i.e. not list
 | ||
|  |   // elements).
 | ||
|  | 
 | ||
|  |   inline StructDataBitCount getDataSectionSize() const { return dataSize; }
 | ||
|  |   inline StructPointerCount getPointerSectionSize() const { return pointerCount; }
 | ||
|  |   inline kj::ArrayPtr<byte> getDataSectionAsBlob();
 | ||
|  |   inline _::ListBuilder getPointerSectionAsList();
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(bool hasDataField(StructDataOffset offset));
 | ||
|  |   // Return true if the field is set to something other than its default value.
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(T getDataField(StructDataOffset offset));
 | ||
|  |   // Gets the data field value of the given type at the given offset.  The offset is measured in
 | ||
|  |   // multiples of the field size, determined by the type.
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(T getDataField(StructDataOffset offset, Mask<T> mask));
 | ||
|  |   // Like getDataField() but applies the given XOR mask to the data on load.  Used for reading
 | ||
|  |   // fields with non-zero default values.
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(void setDataField(StructDataOffset offset, kj::NoInfer<T> value));
 | ||
|  |   // Sets the data field value at the given offset.
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(void setDataField(StructDataOffset offset,
 | ||
|  |                                      kj::NoInfer<T> value, Mask<T> mask));
 | ||
|  |   // Like setDataField() but applies the given XOR mask before storing.  Used for writing fields
 | ||
|  |   // with non-zero default values.
 | ||
|  | 
 | ||
|  |   KJ_ALWAYS_INLINE(PointerBuilder getPointerField(StructPointerOffset ptrIndex));
 | ||
|  |   // Get a builder for a pointer field given the index within the pointer section.
 | ||
|  | 
 | ||
|  |   void clearAll();
 | ||
|  |   // Clear all pointers and data.
 | ||
|  | 
 | ||
|  |   void transferContentFrom(StructBuilder other);
 | ||
|  |   // Adopt all pointers from `other`, and also copy all data.  If `other`'s sections are larger
 | ||
|  |   // than this, the extra data is not transferred, meaning there is a risk of data loss when
 | ||
|  |   // transferring from messages built with future versions of the protocol.
 | ||
|  | 
 | ||
|  |   void copyContentFrom(StructReader other);
 | ||
|  |   // Copy content from `other`.  If `other`'s sections are larger than this, the extra data is not
 | ||
|  |   // copied, meaning there is a risk of data loss when copying from messages built with future
 | ||
|  |   // versions of the protocol.
 | ||
|  | 
 | ||
|  |   StructReader asReader() const;
 | ||
|  |   // Gets a StructReader pointing at the same memory.
 | ||
|  | 
 | ||
|  |   BuilderArena* getArena();
 | ||
|  |   // Gets the arena in which this object is allocated.
 | ||
|  | 
 | ||
|  |   CapTableBuilder* getCapTable();
 | ||
|  |   // Gets the capability context in which this object is operating.
 | ||
|  | 
 | ||
|  |   StructBuilder imbue(CapTableBuilder* capTable);
 | ||
|  |   // Return a copy of this builder except using the given capability context.
 | ||
|  | 
 | ||
|  | private:
 | ||
|  |   SegmentBuilder* segment;     // Memory segment in which the struct resides.
 | ||
|  |   CapTableBuilder* capTable;   // Table of capability indexes.
 | ||
|  |   void* data;                  // Pointer to the encoded data.
 | ||
|  |   WirePointer* pointers;   // Pointer to the encoded pointers.
 | ||
|  | 
 | ||
|  |   StructDataBitCount dataSize;
 | ||
|  |   // Size of data section.  We use a bit count rather than a word count to more easily handle the
 | ||
|  |   // case of struct lists encoded with less than a word per element.
 | ||
|  | 
 | ||
|  |   StructPointerCount pointerCount;  // Size of the pointer section.
 | ||
|  | 
 | ||
|  |   inline StructBuilder(SegmentBuilder* segment, CapTableBuilder* capTable,
 | ||
|  |                        void* data, WirePointer* pointers,
 | ||
|  |                        StructDataBitCount dataSize, StructPointerCount pointerCount)
 | ||
|  |       : segment(segment), capTable(capTable), data(data), pointers(pointers),
 | ||
|  |         dataSize(dataSize), pointerCount(pointerCount) {}
 | ||
|  | 
 | ||
|  |   friend class ListBuilder;
 | ||
|  |   friend struct WireHelpers;
 | ||
|  |   friend class OrphanBuilder;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | class StructReader {
 | ||
|  | public:
 | ||
|  |   inline StructReader()
 | ||
|  |       : segment(nullptr), capTable(nullptr), data(nullptr), pointers(nullptr),
 | ||
|  |         dataSize(ZERO * BITS), pointerCount(ZERO * POINTERS), nestingLimit(0x7fffffff) {}
 | ||
|  |   inline StructReader(kj::ArrayPtr<const word> data)
 | ||
|  |       : segment(nullptr), capTable(nullptr), data(data.begin()), pointers(nullptr),
 | ||
|  |         dataSize(assumeBits<STRUCT_DATA_WORD_COUNT_BITS>(data.size()) * WORDS * BITS_PER_WORD),
 | ||
|  |         pointerCount(ZERO * POINTERS), nestingLimit(0x7fffffff) {}
 | ||
|  | 
 | ||
|  |   const void* getLocation() const { return data; }
 | ||
|  | 
 | ||
|  |   inline StructDataBitCount getDataSectionSize() const { return dataSize; }
 | ||
|  |   inline StructPointerCount getPointerSectionSize() const { return pointerCount; }
 | ||
|  |   inline kj::ArrayPtr<const byte> getDataSectionAsBlob();
 | ||
|  |   inline _::ListReader getPointerSectionAsList();
 | ||
|  | 
 | ||
|  |   kj::Array<word> canonicalize();
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(bool hasDataField(StructDataOffset offset) const);
 | ||
|  |   // Return true if the field is set to something other than its default value.
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(T getDataField(StructDataOffset offset) const);
 | ||
|  |   // Get the data field value of the given type at the given offset.  The offset is measured in
 | ||
|  |   // multiples of the field size, determined by the type.  Returns zero if the offset is past the
 | ||
|  |   // end of the struct's data section.
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(T getDataField(StructDataOffset offset, Mask<T> mask) const);
 | ||
|  |   // Like getDataField(offset), but applies the given XOR mask to the result.  Used for reading
 | ||
|  |   // fields with non-zero default values.
 | ||
|  | 
 | ||
|  |   KJ_ALWAYS_INLINE(PointerReader getPointerField(StructPointerOffset ptrIndex) const);
 | ||
|  |   // Get a reader for a pointer field given the index within the pointer section.  If the index
 | ||
|  |   // is out-of-bounds, returns a null pointer.
 | ||
|  | 
 | ||
|  |   MessageSizeCounts totalSize() const;
 | ||
|  |   // Return the total size of the struct and everything to which it points.  Does not count far
 | ||
|  |   // pointer overhead.  This is useful for deciding how much space is needed to copy the struct
 | ||
|  |   // into a flat array.  However, the caller is advised NOT to treat this value as secure.  Instead,
 | ||
|  |   // use the result as a hint for allocating the first segment, do the copy, and then throw an
 | ||
|  |   // exception if it overruns.
 | ||
|  | 
 | ||
|  |   CapTableReader* getCapTable();
 | ||
|  |   // Gets the capability context in which this object is operating.
 | ||
|  | 
 | ||
|  |   StructReader imbue(CapTableReader* capTable) const;
 | ||
|  |   // Return a copy of this reader except using the given capability context.
 | ||
|  | 
 | ||
|  |   bool isCanonical(const word **readHead, const word **ptrHead,
 | ||
|  |                    bool *dataTrunc, bool *ptrTrunc);
 | ||
|  |   // Validate this pointer's canonicity, subject to the conditions:
 | ||
|  |   // * All data to the left of readHead has been read thus far (for pointer
 | ||
|  |   //   ordering)
 | ||
|  |   // * All pointers in preorder have already been checked
 | ||
|  |   // * This pointer is in the first and only segment of the message
 | ||
|  |   //
 | ||
|  |   // If this function returns false, the struct is non-canonical. If it
 | ||
|  |   // returns true, then:
 | ||
|  |   // * If it is a composite in a list, it is canonical if at least one struct
 | ||
|  |   //   in the list outputs dataTrunc = 1, and at least one outputs ptrTrunc = 1
 | ||
|  |   // * If it is derived from a struct pointer, it is canonical if
 | ||
|  |   //   dataTrunc = 1 AND ptrTrunc = 1
 | ||
|  | 
 | ||
|  | private:
 | ||
|  |   SegmentReader* segment;    // Memory segment in which the struct resides.
 | ||
|  |   CapTableReader* capTable;  // Table of capability indexes.
 | ||
|  | 
 | ||
|  |   const void* data;
 | ||
|  |   const WirePointer* pointers;
 | ||
|  | 
 | ||
|  |   StructDataBitCount dataSize;
 | ||
|  |   // Size of data section.  We use a bit count rather than a word count to more easily handle the
 | ||
|  |   // case of struct lists encoded with less than a word per element.
 | ||
|  | 
 | ||
|  |   StructPointerCount pointerCount;  // Size of the pointer section.
 | ||
|  | 
 | ||
|  |   int nestingLimit;
 | ||
|  |   // Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
 | ||
|  |   // Once this reaches zero, further pointers will be pruned.
 | ||
|  |   // TODO(perf):  Limit to 16 bits for better packing?
 | ||
|  | 
 | ||
|  |   inline StructReader(SegmentReader* segment, CapTableReader* capTable,
 | ||
|  |                       const void* data, const WirePointer* pointers,
 | ||
|  |                       StructDataBitCount dataSize, StructPointerCount pointerCount,
 | ||
|  |                       int nestingLimit)
 | ||
|  |       : segment(segment), capTable(capTable), data(data), pointers(pointers),
 | ||
|  |         dataSize(dataSize), pointerCount(pointerCount),
 | ||
|  |         nestingLimit(nestingLimit) {}
 | ||
|  | 
 | ||
|  |   friend class ListReader;
 | ||
|  |   friend class StructBuilder;
 | ||
|  |   friend struct WireHelpers;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | class ListBuilder: public kj::DisallowConstCopy {
 | ||
|  | public:
 | ||
|  |   inline explicit ListBuilder(ElementSize elementSize)
 | ||
|  |       : segment(nullptr), capTable(nullptr), ptr(nullptr), elementCount(ZERO * ELEMENTS),
 | ||
|  |         step(ZERO * BITS / ELEMENTS), structDataSize(ZERO * BITS),
 | ||
|  |         structPointerCount(ZERO * POINTERS), elementSize(elementSize) {}
 | ||
|  | 
 | ||
|  |   inline word* getLocation() {
 | ||
|  |     // Get the object's location.
 | ||
|  | 
 | ||
|  |     if (elementSize == ElementSize::INLINE_COMPOSITE && ptr != nullptr) {
 | ||
|  |       return reinterpret_cast<word*>(ptr) - POINTER_SIZE_IN_WORDS;
 | ||
|  |     } else {
 | ||
|  |       return reinterpret_cast<word*>(ptr);
 | ||
|  |     }
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   inline ElementSize getElementSize() const { return elementSize; }
 | ||
|  | 
 | ||
|  |   inline ListElementCount size() const;
 | ||
|  |   // The number of elements in the list.
 | ||
|  | 
 | ||
|  |   Text::Builder asText();
 | ||
|  |   Data::Builder asData();
 | ||
|  |   // Reinterpret the list as a blob.  Throws an exception if the elements are not byte-sized.
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(T getDataElement(ElementCount index));
 | ||
|  |   // Get the element of the given type at the given index.
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(void setDataElement(ElementCount index, kj::NoInfer<T> value));
 | ||
|  |   // Set the element at the given index.
 | ||
|  | 
 | ||
|  |   KJ_ALWAYS_INLINE(PointerBuilder getPointerElement(ElementCount index));
 | ||
|  | 
 | ||
|  |   StructBuilder getStructElement(ElementCount index);
 | ||
|  | 
 | ||
|  |   ListReader asReader() const;
 | ||
|  |   // Get a ListReader pointing at the same memory.
 | ||
|  | 
 | ||
|  |   BuilderArena* getArena();
 | ||
|  |   // Gets the arena in which this object is allocated.
 | ||
|  | 
 | ||
|  |   CapTableBuilder* getCapTable();
 | ||
|  |   // Gets the capability context in which this object is operating.
 | ||
|  | 
 | ||
|  |   ListBuilder imbue(CapTableBuilder* capTable);
 | ||
|  |   // Return a copy of this builder except using the given capability context.
 | ||
|  | 
 | ||
|  | private:
 | ||
|  |   SegmentBuilder* segment;    // Memory segment in which the list resides.
 | ||
|  |   CapTableBuilder* capTable;  // Table of capability indexes.
 | ||
|  | 
 | ||
|  |   byte* ptr;  // Pointer to list content.
 | ||
|  | 
 | ||
|  |   ListElementCount elementCount;  // Number of elements in the list.
 | ||
|  | 
 | ||
|  |   BitsPerElementN<23> step;
 | ||
|  |   // The distance between elements. The maximum value occurs when a struct contains 2^16-1 data
 | ||
|  |   // words and 2^16-1 pointers, i.e. 2^17 - 2 words, or 2^23 - 128 bits.
 | ||
|  | 
 | ||
|  |   StructDataBitCount structDataSize;
 | ||
|  |   StructPointerCount structPointerCount;
 | ||
|  |   // The struct properties to use when interpreting the elements as structs.  All lists can be
 | ||
|  |   // interpreted as struct lists, so these are always filled in.
 | ||
|  | 
 | ||
|  |   ElementSize elementSize;
 | ||
|  |   // The element size as a ElementSize. This is only really needed to disambiguate INLINE_COMPOSITE
 | ||
|  |   // from other types when the overall size is exactly zero or one words.
 | ||
|  | 
 | ||
|  |   inline ListBuilder(SegmentBuilder* segment, CapTableBuilder* capTable, void* ptr,
 | ||
|  |                      BitsPerElementN<23> step, ListElementCount size,
 | ||
|  |                      StructDataBitCount structDataSize, StructPointerCount structPointerCount,
 | ||
|  |                      ElementSize elementSize)
 | ||
|  |       : segment(segment), capTable(capTable), ptr(reinterpret_cast<byte*>(ptr)),
 | ||
|  |         elementCount(size), step(step), structDataSize(structDataSize),
 | ||
|  |         structPointerCount(structPointerCount), elementSize(elementSize) {}
 | ||
|  | 
 | ||
|  |   friend class StructBuilder;
 | ||
|  |   friend struct WireHelpers;
 | ||
|  |   friend class OrphanBuilder;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | class ListReader {
 | ||
|  | public:
 | ||
|  |   inline explicit ListReader(ElementSize elementSize)
 | ||
|  |       : segment(nullptr), capTable(nullptr), ptr(nullptr), elementCount(ZERO * ELEMENTS),
 | ||
|  |         step(ZERO * BITS / ELEMENTS), structDataSize(ZERO * BITS),
 | ||
|  |         structPointerCount(ZERO * POINTERS), elementSize(elementSize), nestingLimit(0x7fffffff) {}
 | ||
|  | 
 | ||
|  |   inline ListElementCount size() const;
 | ||
|  |   // The number of elements in the list.
 | ||
|  | 
 | ||
|  |   inline ElementSize getElementSize() const { return elementSize; }
 | ||
|  | 
 | ||
|  |   Text::Reader asText();
 | ||
|  |   Data::Reader asData();
 | ||
|  |   // Reinterpret the list as a blob.  Throws an exception if the elements are not byte-sized.
 | ||
|  | 
 | ||
|  |   kj::ArrayPtr<const byte> asRawBytes();
 | ||
|  | 
 | ||
|  |   template <typename T>
 | ||
|  |   KJ_ALWAYS_INLINE(T getDataElement(ElementCount index) const);
 | ||
|  |   // Get the element of the given type at the given index.
 | ||
|  | 
 | ||
|  |   KJ_ALWAYS_INLINE(PointerReader getPointerElement(ElementCount index) const);
 | ||
|  | 
 | ||
|  |   StructReader getStructElement(ElementCount index) const;
 | ||
|  | 
 | ||
|  |   CapTableReader* getCapTable();
 | ||
|  |   // Gets the capability context in which this object is operating.
 | ||
|  | 
 | ||
|  |   ListReader imbue(CapTableReader* capTable) const;
 | ||
|  |   // Return a copy of this reader except using the given capability context.
 | ||
|  | 
 | ||
|  |   bool isCanonical(const word **readHead, const WirePointer* ref);
 | ||
|  |   // Validate this pointer's canonicity, subject to the conditions:
 | ||
|  |   // * All data to the left of readHead has been read thus far (for pointer
 | ||
|  |   //   ordering)
 | ||
|  |   // * All pointers in preorder have already been checked
 | ||
|  |   // * This pointer is in the first and only segment of the message
 | ||
|  | 
 | ||
|  | private:
 | ||
|  |   SegmentReader* segment;    // Memory segment in which the list resides.
 | ||
|  |   CapTableReader* capTable;  // Table of capability indexes.
 | ||
|  | 
 | ||
|  |   const byte* ptr;  // Pointer to list content.
 | ||
|  | 
 | ||
|  |   ListElementCount elementCount;  // Number of elements in the list.
 | ||
|  | 
 | ||
|  |   BitsPerElementN<23> step;
 | ||
|  |   // The distance between elements. The maximum value occurs when a struct contains 2^16-1 data
 | ||
|  |   // words and 2^16-1 pointers, i.e. 2^17 - 2 words, or 2^23 - 2 bits.
 | ||
|  | 
 | ||
|  |   StructDataBitCount structDataSize;
 | ||
|  |   StructPointerCount structPointerCount;
 | ||
|  |   // The struct properties to use when interpreting the elements as structs.  All lists can be
 | ||
|  |   // interpreted as struct lists, so these are always filled in.
 | ||
|  | 
 | ||
|  |   ElementSize elementSize;
 | ||
|  |   // The element size as a ElementSize. This is only really needed to disambiguate INLINE_COMPOSITE
 | ||
|  |   // from other types when the overall size is exactly zero or one words.
 | ||
|  | 
 | ||
|  |   int nestingLimit;
 | ||
|  |   // Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
 | ||
|  |   // Once this reaches zero, further pointers will be pruned.
 | ||
|  | 
 | ||
|  |   inline ListReader(SegmentReader* segment, CapTableReader* capTable, const void* ptr,
 | ||
|  |                     ListElementCount elementCount, BitsPerElementN<23> step,
 | ||
|  |                     StructDataBitCount structDataSize, StructPointerCount structPointerCount,
 | ||
|  |                     ElementSize elementSize, int nestingLimit)
 | ||
|  |       : segment(segment), capTable(capTable), ptr(reinterpret_cast<const byte*>(ptr)),
 | ||
|  |         elementCount(elementCount), step(step), structDataSize(structDataSize),
 | ||
|  |         structPointerCount(structPointerCount), elementSize(elementSize),
 | ||
|  |         nestingLimit(nestingLimit) {}
 | ||
|  | 
 | ||
|  |   friend class StructReader;
 | ||
|  |   friend class ListBuilder;
 | ||
|  |   friend struct WireHelpers;
 | ||
|  |   friend class OrphanBuilder;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | class OrphanBuilder {
 | ||
|  | public:
 | ||
|  |   inline OrphanBuilder(): segment(nullptr), capTable(nullptr), location(nullptr) {
 | ||
|  |     memset(&tag, 0, sizeof(tag));
 | ||
|  |   }
 | ||
|  |   OrphanBuilder(const OrphanBuilder& other) = delete;
 | ||
|  |   inline OrphanBuilder(OrphanBuilder&& other) noexcept;
 | ||
|  |   inline ~OrphanBuilder() noexcept(false);
 | ||
|  | 
 | ||
|  |   static OrphanBuilder initStruct(BuilderArena* arena, CapTableBuilder* capTable, StructSize size);
 | ||
|  |   static OrphanBuilder initList(BuilderArena* arena, CapTableBuilder* capTable,
 | ||
|  |                                 ElementCount elementCount, ElementSize elementSize);
 | ||
|  |   static OrphanBuilder initStructList(BuilderArena* arena, CapTableBuilder* capTable,
 | ||
|  |                                       ElementCount elementCount, StructSize elementSize);
 | ||
|  |   static OrphanBuilder initText(BuilderArena* arena, CapTableBuilder* capTable, ByteCount size);
 | ||
|  |   static OrphanBuilder initData(BuilderArena* arena, CapTableBuilder* capTable, ByteCount size);
 | ||
|  | 
 | ||
|  |   static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, StructReader copyFrom);
 | ||
|  |   static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, ListReader copyFrom);
 | ||
|  |   static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, PointerReader copyFrom);
 | ||
|  |   static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, Text::Reader copyFrom);
 | ||
|  |   static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, Data::Reader copyFrom);
 | ||
|  | #if !CAPNP_LITE
 | ||
|  |   static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable,
 | ||
|  |                             kj::Own<ClientHook> copyFrom);
 | ||
|  | #endif  // !CAPNP_LITE
 | ||
|  | 
 | ||
|  |   static OrphanBuilder concat(BuilderArena* arena, CapTableBuilder* capTable,
 | ||
|  |                               ElementSize expectedElementSize, StructSize expectedStructSize,
 | ||
|  |                               kj::ArrayPtr<const ListReader> lists);
 | ||
|  | 
 | ||
|  |   static OrphanBuilder referenceExternalData(BuilderArena* arena, Data::Reader data);
 | ||
|  | 
 | ||
|  |   OrphanBuilder& operator=(const OrphanBuilder& other) = delete;
 | ||
|  |   inline OrphanBuilder& operator=(OrphanBuilder&& other);
 | ||
|  | 
 | ||
|  |   inline bool operator==(decltype(nullptr)) const { return location == nullptr; }
 | ||
|  |   inline bool operator!=(decltype(nullptr)) const { return location != nullptr; }
 | ||
|  | 
 | ||
|  |   StructBuilder asStruct(StructSize size);
 | ||
|  |   // Interpret as a struct, or throw an exception if not a struct.
 | ||
|  | 
 | ||
|  |   ListBuilder asList(ElementSize elementSize);
 | ||
|  |   // Interpret as a list, or throw an exception if not a list.  elementSize cannot be
 | ||
|  |   // INLINE_COMPOSITE -- use asStructList() instead.
 | ||
|  | 
 | ||
|  |   ListBuilder asStructList(StructSize elementSize);
 | ||
|  |   // Interpret as a struct list, or throw an exception if not a list.
 | ||
|  | 
 | ||
|  |   ListBuilder asListAnySize();
 | ||
|  |   // For AnyList.
 | ||
|  | 
 | ||
|  |   Text::Builder asText();
 | ||
|  |   Data::Builder asData();
 | ||
|  |   // Interpret as a blob, or throw an exception if not a blob.
 | ||
|  | 
 | ||
|  |   StructReader asStructReader(StructSize size) const;
 | ||
|  |   ListReader asListReader(ElementSize elementSize) const;
 | ||
|  |   ListReader asListReaderAnySize() const;
 | ||
|  | #if !CAPNP_LITE
 | ||
|  |   kj::Own<ClientHook> asCapability() const;
 | ||
|  | #endif  // !CAPNP_LITE
 | ||
|  |   Text::Reader asTextReader() const;
 | ||
|  |   Data::Reader asDataReader() const;
 | ||
|  | 
 | ||
|  |   bool truncate(ElementCount size, bool isText) KJ_WARN_UNUSED_RESULT;
 | ||
|  |   // Resize the orphan list to the given size. Returns false if the list is currently empty but
 | ||
|  |   // the requested size is non-zero, in which case the caller will need to allocate a new list.
 | ||
|  | 
 | ||
|  |   void truncate(ElementCount size, ElementSize elementSize);
 | ||
|  |   void truncate(ElementCount size, StructSize elementSize);
 | ||
|  |   void truncateText(ElementCount size);
 | ||
|  |   // Versions of truncate() that know how to allocate a new list if needed.
 | ||
|  | 
 | ||
|  | private:
 | ||
|  |   static_assert(ONE * POINTERS * WORDS_PER_POINTER == ONE * WORDS,
 | ||
|  |                 "This struct assumes a pointer is one word.");
 | ||
|  |   word tag;
 | ||
|  |   // Contains an encoded WirePointer representing this object.  WirePointer is defined in
 | ||
|  |   // layout.c++, but fits in a word.
 | ||
|  |   //
 | ||
|  |   // This may be a FAR pointer.  Even in that case, `location` points to the eventual destination
 | ||
|  |   // of that far pointer.  The reason we keep the far pointer around rather than just making `tag`
 | ||
|  |   // represent the final destination is because if the eventual adopter of the pointer is not in
 | ||
|  |   // the target's segment then it may be useful to reuse the far pointer landing pad.
 | ||
|  |   //
 | ||
|  |   // If `tag` is not a far pointer, its offset is garbage; only `location` points to the actual
 | ||
|  |   // target.
 | ||
|  | 
 | ||
|  |   SegmentBuilder* segment;
 | ||
|  |   // Segment in which the object resides.
 | ||
|  | 
 | ||
|  |   CapTableBuilder* capTable;
 | ||
|  |   // Table of capability indexes.
 | ||
|  | 
 | ||
|  |   word* location;
 | ||
|  |   // Pointer to the object, or nullptr if the pointer is null.  For capabilities, we make this
 | ||
|  |   // 0x1 just so that it is non-null for operator==, but it is never used.
 | ||
|  | 
 | ||
|  |   inline OrphanBuilder(const void* tagPtr, SegmentBuilder* segment,
 | ||
|  |                        CapTableBuilder* capTable, word* location)
 | ||
|  |       : segment(segment), capTable(capTable), location(location) {
 | ||
|  |     memcpy(&tag, tagPtr, sizeof(tag));
 | ||
|  |   }
 | ||
|  | 
 | ||
|  |   inline WirePointer* tagAsPtr() { return reinterpret_cast<WirePointer*>(&tag); }
 | ||
|  |   inline const WirePointer* tagAsPtr() const { return reinterpret_cast<const WirePointer*>(&tag); }
 | ||
|  | 
 | ||
|  |   void euthanize();
 | ||
|  |   // Erase the target object, zeroing it out and possibly reclaiming the memory.  Called when
 | ||
|  |   // the OrphanBuilder is being destroyed or overwritten and it is non-null.
 | ||
|  | 
 | ||
|  |   friend struct WireHelpers;
 | ||
|  | };
 | ||
|  | 
 | ||
|  | // =======================================================================================
 | ||
|  | // Internal implementation details...
 | ||
|  | 
 | ||
|  | // These are defined in the source file.
 | ||
|  | template <> typename Text::Builder PointerBuilder::initBlob<Text>(ByteCount size);
 | ||
|  | template <> void PointerBuilder::setBlob<Text>(typename Text::Reader value);
 | ||
|  | template <> typename Text::Builder PointerBuilder::getBlob<Text>(
 | ||
|  |     const void* defaultValue, ByteCount defaultSize);
 | ||
|  | template <> typename Text::Reader PointerReader::getBlob<Text>(
 | ||
|  |     const void* defaultValue, ByteCount defaultSize) const;
 | ||
|  | 
 | ||
|  | template <> typename Data::Builder PointerBuilder::initBlob<Data>(ByteCount size);
 | ||
|  | template <> void PointerBuilder::setBlob<Data>(typename Data::Reader value);
 | ||
|  | template <> typename Data::Builder PointerBuilder::getBlob<Data>(
 | ||
|  |     const void* defaultValue, ByteCount defaultSize);
 | ||
|  | template <> typename Data::Reader PointerReader::getBlob<Data>(
 | ||
|  |     const void* defaultValue, ByteCount defaultSize) const;
 | ||
|  | 
 | ||
|  | inline PointerBuilder PointerBuilder::getRoot(
 | ||
|  |     SegmentBuilder* segment, CapTableBuilder* capTable, word* location) {
 | ||
|  |   return PointerBuilder(segment, capTable, reinterpret_cast<WirePointer*>(location));
 | ||
|  | }
 | ||
|  | 
 | ||
|  | inline PointerReader PointerReader::getRootUnchecked(const word* location) {
 | ||
|  |   return PointerReader(nullptr, nullptr,
 | ||
|  |                        reinterpret_cast<const WirePointer*>(location), 0x7fffffff);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | inline kj::ArrayPtr<byte> StructBuilder::getDataSectionAsBlob() {
 | ||
|  |   return kj::ArrayPtr<byte>(reinterpret_cast<byte*>(data),
 | ||
|  |       unbound(dataSize / BITS_PER_BYTE / BYTES));
 | ||
|  | }
 | ||
|  | 
 | ||
|  | inline _::ListBuilder StructBuilder::getPointerSectionAsList() {
 | ||
|  |   return _::ListBuilder(segment, capTable, pointers, ONE * POINTERS * BITS_PER_POINTER / ELEMENTS,
 | ||
|  |                         pointerCount * (ONE * ELEMENTS / POINTERS),
 | ||
|  |                         ZERO * BITS, ONE * POINTERS, ElementSize::POINTER);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline bool StructBuilder::hasDataField(StructDataOffset offset) {
 | ||
|  |   return getDataField<Mask<T>>(offset) != 0;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline bool StructBuilder::hasDataField<Void>(StructDataOffset offset) {
 | ||
|  |   return false;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline T StructBuilder::getDataField(StructDataOffset offset) {
 | ||
|  |   return reinterpret_cast<WireValue<T>*>(data)[unbound(offset / ELEMENTS)].get();
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline bool StructBuilder::getDataField<bool>(StructDataOffset offset) {
 | ||
|  |   BitCount32 boffset = offset * (ONE * BITS / ELEMENTS);
 | ||
|  |   byte* b = reinterpret_cast<byte*>(data) + boffset / BITS_PER_BYTE;
 | ||
|  |   return (*reinterpret_cast<uint8_t*>(b) &
 | ||
|  |       unbound(ONE << (boffset % BITS_PER_BYTE / BITS))) != 0;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline Void StructBuilder::getDataField<Void>(StructDataOffset offset) {
 | ||
|  |   return VOID;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline T StructBuilder::getDataField(StructDataOffset offset, Mask<T> mask) {
 | ||
|  |   return unmask<T>(getDataField<Mask<T> >(offset), mask);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline void StructBuilder::setDataField(StructDataOffset offset, kj::NoInfer<T> value) {
 | ||
|  |   reinterpret_cast<WireValue<T>*>(data)[unbound(offset / ELEMENTS)].set(value);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | #if CAPNP_CANONICALIZE_NAN
 | ||
|  | // Use mask() on floats and doubles to make sure we canonicalize NaNs.
 | ||
|  | template <>
 | ||
|  | inline void StructBuilder::setDataField<float>(StructDataOffset offset, float value) {
 | ||
|  |   setDataField<uint32_t>(offset, mask<float>(value, 0));
 | ||
|  | }
 | ||
|  | template <>
 | ||
|  | inline void StructBuilder::setDataField<double>(StructDataOffset offset, double value) {
 | ||
|  |   setDataField<uint64_t>(offset, mask<double>(value, 0));
 | ||
|  | }
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline void StructBuilder::setDataField<bool>(StructDataOffset offset, bool value) {
 | ||
|  |   auto boffset = offset * (ONE * BITS / ELEMENTS);
 | ||
|  |   byte* b = reinterpret_cast<byte*>(data) + boffset / BITS_PER_BYTE;
 | ||
|  |   uint bitnum = unboundMaxBits<3>(boffset % BITS_PER_BYTE / BITS);
 | ||
|  |   *reinterpret_cast<uint8_t*>(b) = (*reinterpret_cast<uint8_t*>(b) & ~(1 << bitnum))
 | ||
|  |                                  | (static_cast<uint8_t>(value) << bitnum);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline void StructBuilder::setDataField<Void>(StructDataOffset offset, Void value) {}
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline void StructBuilder::setDataField(StructDataOffset offset,
 | ||
|  |                                         kj::NoInfer<T> value, Mask<T> m) {
 | ||
|  |   setDataField<Mask<T> >(offset, mask<T>(value, m));
 | ||
|  | }
 | ||
|  | 
 | ||
|  | inline PointerBuilder StructBuilder::getPointerField(StructPointerOffset ptrIndex) {
 | ||
|  |   // Hacky because WirePointer is defined in the .c++ file (so is incomplete here).
 | ||
|  |   return PointerBuilder(segment, capTable, reinterpret_cast<WirePointer*>(
 | ||
|  |       reinterpret_cast<word*>(pointers) + ptrIndex * WORDS_PER_POINTER));
 | ||
|  | }
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | inline kj::ArrayPtr<const byte> StructReader::getDataSectionAsBlob() {
 | ||
|  |   return kj::ArrayPtr<const byte>(reinterpret_cast<const byte*>(data),
 | ||
|  |       unbound(dataSize / BITS_PER_BYTE / BYTES));
 | ||
|  | }
 | ||
|  | 
 | ||
|  | inline _::ListReader StructReader::getPointerSectionAsList() {
 | ||
|  |   return _::ListReader(segment, capTable, pointers, pointerCount * (ONE * ELEMENTS / POINTERS),
 | ||
|  |                        ONE * POINTERS * BITS_PER_POINTER / ELEMENTS, ZERO * BITS, ONE * POINTERS,
 | ||
|  |                        ElementSize::POINTER, nestingLimit);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline bool StructReader::hasDataField(StructDataOffset offset) const {
 | ||
|  |   return getDataField<Mask<T>>(offset) != 0;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline bool StructReader::hasDataField<Void>(StructDataOffset offset) const {
 | ||
|  |   return false;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline T StructReader::getDataField(StructDataOffset offset) const {
 | ||
|  |   if ((offset + ONE * ELEMENTS) * capnp::bitsPerElement<T>() <= dataSize) {
 | ||
|  |     return reinterpret_cast<const WireValue<T>*>(data)[unbound(offset / ELEMENTS)].get();
 | ||
|  |   } else {
 | ||
|  |     return static_cast<T>(0);
 | ||
|  |   }
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline bool StructReader::getDataField<bool>(StructDataOffset offset) const {
 | ||
|  |   auto boffset = offset * (ONE * BITS / ELEMENTS);
 | ||
|  |   if (boffset < dataSize) {
 | ||
|  |     const byte* b = reinterpret_cast<const byte*>(data) + boffset / BITS_PER_BYTE;
 | ||
|  |     return (*reinterpret_cast<const uint8_t*>(b) &
 | ||
|  |         unbound(ONE << (boffset % BITS_PER_BYTE / BITS))) != 0;
 | ||
|  |   } else {
 | ||
|  |     return false;
 | ||
|  |   }
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline Void StructReader::getDataField<Void>(StructDataOffset offset) const {
 | ||
|  |   return VOID;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | T StructReader::getDataField(StructDataOffset offset, Mask<T> mask) const {
 | ||
|  |   return unmask<T>(getDataField<Mask<T> >(offset), mask);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | inline PointerReader StructReader::getPointerField(StructPointerOffset ptrIndex) const {
 | ||
|  |   if (ptrIndex < pointerCount) {
 | ||
|  |     // Hacky because WirePointer is defined in the .c++ file (so is incomplete here).
 | ||
|  |     return PointerReader(segment, capTable, reinterpret_cast<const WirePointer*>(
 | ||
|  |         reinterpret_cast<const word*>(pointers) + ptrIndex * WORDS_PER_POINTER), nestingLimit);
 | ||
|  |   } else{
 | ||
|  |     return PointerReader();
 | ||
|  |   }
 | ||
|  | }
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | inline ListElementCount ListBuilder::size() const { return elementCount; }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline T ListBuilder::getDataElement(ElementCount index) {
 | ||
|  |   return reinterpret_cast<WireValue<T>*>(
 | ||
|  |       ptr + upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE)->get();
 | ||
|  | 
 | ||
|  |   // TODO(perf):  Benchmark this alternate implementation, which I suspect may make better use of
 | ||
|  |   //   the x86 SIB byte.  Also use it for all the other getData/setData implementations below, and
 | ||
|  |   //   the various non-inline methods that look up pointers.
 | ||
|  |   //   Also if using this, consider changing ptr back to void* instead of byte*.
 | ||
|  | //  return reinterpret_cast<WireValue<T>*>(ptr)[
 | ||
|  | //      index / ELEMENTS * (step / capnp::bitsPerElement<T>())].get();
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline bool ListBuilder::getDataElement<bool>(ElementCount index) {
 | ||
|  |   // Ignore step for bit lists because bit lists cannot be upgraded to struct lists.
 | ||
|  |   auto bindex = index * (ONE * BITS / ELEMENTS);
 | ||
|  |   byte* b = ptr + bindex / BITS_PER_BYTE;
 | ||
|  |   return (*reinterpret_cast<uint8_t*>(b) &
 | ||
|  |       unbound(ONE << (bindex % BITS_PER_BYTE / BITS))) != 0;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline Void ListBuilder::getDataElement<Void>(ElementCount index) {
 | ||
|  |   return VOID;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline void ListBuilder::setDataElement(ElementCount index, kj::NoInfer<T> value) {
 | ||
|  |   reinterpret_cast<WireValue<T>*>(
 | ||
|  |       ptr + upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE)->set(value);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | #if CAPNP_CANONICALIZE_NAN
 | ||
|  | // Use mask() on floats and doubles to make sure we canonicalize NaNs.
 | ||
|  | template <>
 | ||
|  | inline void ListBuilder::setDataElement<float>(ElementCount index, float value) {
 | ||
|  |   setDataElement<uint32_t>(index, mask<float>(value, 0));
 | ||
|  | }
 | ||
|  | template <>
 | ||
|  | inline void ListBuilder::setDataElement<double>(ElementCount index, double value) {
 | ||
|  |   setDataElement<uint64_t>(index, mask<double>(value, 0));
 | ||
|  | }
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline void ListBuilder::setDataElement<bool>(ElementCount index, bool value) {
 | ||
|  |   // Ignore stepBytes for bit lists because bit lists cannot be upgraded to struct lists.
 | ||
|  |   auto bindex = index * (ONE * BITS / ELEMENTS);
 | ||
|  |   byte* b = ptr + bindex / BITS_PER_BYTE;
 | ||
|  |   auto bitnum = bindex % BITS_PER_BYTE / BITS;
 | ||
|  |   *reinterpret_cast<uint8_t*>(b) = (*reinterpret_cast<uint8_t*>(b) & ~(1 << unbound(bitnum)))
 | ||
|  |                                  | (static_cast<uint8_t>(value) << unbound(bitnum));
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline void ListBuilder::setDataElement<Void>(ElementCount index, Void value) {}
 | ||
|  | 
 | ||
|  | inline PointerBuilder ListBuilder::getPointerElement(ElementCount index) {
 | ||
|  |   return PointerBuilder(segment, capTable, reinterpret_cast<WirePointer*>(ptr +
 | ||
|  |       upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE));
 | ||
|  | }
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | inline ListElementCount ListReader::size() const { return elementCount; }
 | ||
|  | 
 | ||
|  | template <typename T>
 | ||
|  | inline T ListReader::getDataElement(ElementCount index) const {
 | ||
|  |   return reinterpret_cast<const WireValue<T>*>(
 | ||
|  |       ptr + upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE)->get();
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline bool ListReader::getDataElement<bool>(ElementCount index) const {
 | ||
|  |   // Ignore step for bit lists because bit lists cannot be upgraded to struct lists.
 | ||
|  |   auto bindex = index * (ONE * BITS / ELEMENTS);
 | ||
|  |   const byte* b = ptr + bindex / BITS_PER_BYTE;
 | ||
|  |   return (*reinterpret_cast<const uint8_t*>(b) &
 | ||
|  |       unbound(ONE << (bindex % BITS_PER_BYTE / BITS))) != 0;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | template <>
 | ||
|  | inline Void ListReader::getDataElement<Void>(ElementCount index) const {
 | ||
|  |   return VOID;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | inline PointerReader ListReader::getPointerElement(ElementCount index) const {
 | ||
|  |   return PointerReader(segment, capTable, reinterpret_cast<const WirePointer*>(
 | ||
|  |       ptr + upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE), nestingLimit);
 | ||
|  | }
 | ||
|  | 
 | ||
|  | // -------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | inline OrphanBuilder::OrphanBuilder(OrphanBuilder&& other) noexcept
 | ||
|  |     : segment(other.segment), capTable(other.capTable), location(other.location) {
 | ||
|  |   memcpy(&tag, &other.tag, sizeof(tag));  // Needs memcpy to comply with aliasing rules.
 | ||
|  |   other.segment = nullptr;
 | ||
|  |   other.location = nullptr;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | inline OrphanBuilder::~OrphanBuilder() noexcept(false) {
 | ||
|  |   if (segment != nullptr) euthanize();
 | ||
|  | }
 | ||
|  | 
 | ||
|  | inline OrphanBuilder& OrphanBuilder::operator=(OrphanBuilder&& other) {
 | ||
|  |   // With normal smart pointers, it's important to handle the case where the incoming pointer
 | ||
|  |   // is actually transitively owned by this one.  In this case, euthanize() would destroy `other`
 | ||
|  |   // before we copied it.  This isn't possible in the case of `OrphanBuilder` because it only
 | ||
|  |   // owns message objects, and `other` is not itself a message object, therefore cannot possibly
 | ||
|  |   // be transitively owned by `this`.
 | ||
|  | 
 | ||
|  |   if (segment != nullptr) euthanize();
 | ||
|  |   segment = other.segment;
 | ||
|  |   capTable = other.capTable;
 | ||
|  |   location = other.location;
 | ||
|  |   memcpy(&tag, &other.tag, sizeof(tag));  // Needs memcpy to comply with aliasing rules.
 | ||
|  |   other.segment = nullptr;
 | ||
|  |   other.location = nullptr;
 | ||
|  |   return *this;
 | ||
|  | }
 | ||
|  | 
 | ||
|  | }  // namespace _ (private)
 | ||
|  | }  // namespace capnp
 | ||
|  | 
 | ||
|  | #endif  // CAPNP_LAYOUT_H_
 |