openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

131 lines
3.2 KiB

#! /usr/bin/env python
# type: ignore
import matplotlib.pyplot as plt
from selfdrive.controls.lib.lateral_mpc import libmpc_py
from selfdrive.controls.lib.drive_helpers import MPC_COST_LAT
import math
libmpc = libmpc_py.libmpc
libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, 1.)
cur_state = libmpc_py.ffi.new("state_t *")
cur_state[0].x = 0.0
cur_state[0].y = 0.0
cur_state[0].psi = 0.0
cur_state[0].delta = 0.0
mpc_solution = libmpc_py.ffi.new("log_t *")
xx = []
yy = []
deltas = []
psis = []
times = []
curvature_factor = 0.3
v_ref = 1.0 * 20.12 # 45 mph
LANE_WIDTH = 3.7
p = [0.0, 0.0, 0.0, 0.0]
p_l = p[:]
p_l[3] += LANE_WIDTH / 2.0
p_r = p[:]
p_r[3] -= LANE_WIDTH / 2.0
l_poly = libmpc_py.ffi.new("double[4]", p_l)
r_poly = libmpc_py.ffi.new("double[4]", p_r)
p_poly = libmpc_py.ffi.new("double[4]", p)
l_prob = 1.0
r_prob = 1.0
p_prob = 1.0
for i in range(1):
cur_state[0].delta = math.radians(510. / 13.)
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
curvature_factor, v_ref, LANE_WIDTH)
timesi = []
ct = 0
for i in range(21):
timesi.append(ct)
if i <= 4:
ct += 0.05
else:
ct += 0.15
xi = list(mpc_solution[0].x)
yi = list(mpc_solution[0].y)
psii = list(mpc_solution[0].psi)
deltai = list(mpc_solution[0].delta)
print("COST: ", mpc_solution[0].cost)
plt.figure(0)
plt.subplot(3, 1, 1)
plt.plot(timesi, psii)
plt.ylabel('psi')
plt.grid(True)
plt.subplot(3, 1, 2)
plt.plot(timesi, deltai)
plt.ylabel('delta')
plt.grid(True)
plt.subplot(3, 1, 3)
plt.plot(timesi, yi)
plt.ylabel('y')
plt.grid(True)
plt.show()
#### UNCOMMENT TO CHECK ITERATIVE SOLUTION
####
####for i in range(100):
#### libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
#### curvature_factor, v_ref, LANE_WIDTH)
#### print "x", list(mpc_solution[0].x)
#### print "y", list(mpc_solution[0].y)
#### print "delta", list(mpc_solution[0].delta)
#### print "psi", list(mpc_solution[0].psi)
#### # cur_state[0].x = mpc_solution[0].x[1]
#### # cur_state[0].y = mpc_solution[0].y[1]
#### # cur_state[0].psi = mpc_solution[0].psi[1]
#### cur_state[0].delta = radians(200 / 13.)#mpc_solution[0].delta[1]
####
#### xx.append(cur_state[0].x)
#### yy.append(cur_state[0].y)
#### psis.append(cur_state[0].psi)
#### deltas.append(cur_state[0].delta)
#### times.append(i * 0.05)
####
####
####def f(x):
#### return p_poly[0] * x**3 + p_poly[1] * x**2 + p_poly[2] * x + p_poly[3]
####
####
##### planned = map(f, xx)
##### plt.figure(1)
##### plt.plot(yy, xx, 'r-')
##### plt.plot(planned, xx, 'b--', linewidth=0.5)
##### plt.axes().set_aspect('equal', 'datalim')
##### plt.gca().invert_xaxis()
####
##### planned = map(f, map(float, list(mpc_solution[0].x)[1:]))
##### plt.figure(1)
##### plt.plot(map(float, list(mpc_solution[0].y)[1:]), map(float, list(mpc_solution[0].x)[1:]), 'r-')
##### plt.plot(planned, map(float, list(mpc_solution[0].x)[1:]), 'b--', linewidth=0.5)
##### plt.axes().set_aspect('equal', 'datalim')
##### plt.gca().invert_xaxis()
####
####plt.figure(2)
####plt.subplot(2, 1, 1)
####plt.plot(times, psis)
####plt.ylabel('psi')
####plt.subplot(2, 1, 2)
####plt.plot(times, deltas)
####plt.ylabel('delta')
####
####
####plt.show()