openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

189 lines
5.9 KiB

#! /usr/bin/env python
# type: ignore
import numpy as np
from collections import OrderedDict
import matplotlib.pyplot as plt
from selfdrive.car.honda.interface import CarInterface
from selfdrive.controls.lib.lateral_mpc import libmpc_py
from selfdrive.controls.lib.vehicle_model import VehicleModel
# plot lateral MPC trajectory by defining boundary conditions:
# lane lines, p_poly and vehicle states. Use this script to tune MPC costs
libmpc = libmpc_py.libmpc
mpc_solution = libmpc_py.ffi.new("log_t *")
points_l = np.array([1.1049711, 1.1053879, 1.1073375, 1.1096942, 1.1124474, 1.1154714, 1.1192677, 1.1245866, 1.1321017, 1.1396152, 1.146443, 1.1555313, 1.1662073, 1.1774249, 1.1888939, 1.2009926, 1.2149779, 1.2300836, 1.2450289, 1.2617753, 1.2785473, 1.2974714, 1.3151019, 1.3331807, 1.3545501, 1.3763691, 1.3983455, 1.4215056, 1.4446729, 1.4691089, 1.4927692, 1.5175346, 1.5429921, 1.568854, 1.5968665, 1.6268958, 1.657122, 1.6853137, 1.7152609, 1.7477539, 1.7793678, 1.8098511, 1.8428392, 1.8746407, 1.9089606, 1.9426043, 1.9775689, 2.0136933, 2.0520134, 2.0891454])
points_r = np.array([-2.4442139, -2.4449506, -2.4448867, -2.44377, -2.4422617, -2.4393811, -2.4374201, -2.4334245, -2.4286852, -2.4238286, -2.4177458, -2.4094386, -2.3994849, -2.3904033, -2.380136, -2.3699453, -2.3594661, -2.3474073, -2.3342307, -2.3194637, -2.3046403, -2.2881098, -2.2706163, -2.2530098, -2.235604, -2.2160542, -2.1967411, -2.1758952, -2.1544619, -2.1325269, -2.1091819, -2.0850561, -2.0621953, -2.0364127, -2.0119917, -1.9851667, -1.9590458, -1.9306552, -1.9024918, -1.8745357, -1.8432863, -1.8131843, -1.7822732, -1.7507075, -1.7180918, -1.6845931, -1.650871, -1.6157099, -1.5787286, -1.5418037])
points_c = (points_l + points_r) / 2.0
def compute_path_pinv():
deg = 3
x = np.arange(50.0)
X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
pinv = np.linalg.pinv(X)
return pinv
def model_polyfit(points):
path_pinv = compute_path_pinv()
return np.dot(path_pinv, map(float, points))
xx = []
yy = []
deltas = []
psis = []
times = []
CP = CarInterface.get_params("HONDA CIVIC 2016 TOURING")
VM = VehicleModel(CP)
v_ref = 32.00 # 45 mph
curvature_factor = VM.curvature_factor(v_ref)
print(curvature_factor)
LANE_WIDTH = 3.9
p_l = map(float, model_polyfit(points_l))
p_r = map(float, model_polyfit(points_r))
p_p = map(float, model_polyfit(points_c))
l_poly = libmpc_py.ffi.new("double[4]", p_l)
r_poly = libmpc_py.ffi.new("double[4]", p_r)
p_poly = libmpc_py.ffi.new("double[4]", p_p)
l_prob = 1.0
r_prob = 1.0
p_prob = 1.0 # This is always 1
mpc_x_points = np.linspace(0., 2.5*v_ref, num=50)
points_poly_l = np.polyval(p_l, mpc_x_points)
points_poly_r = np.polyval(p_r, mpc_x_points)
points_poly_p = np.polyval(p_p, mpc_x_points)
print(points_poly_l)
lanes_x = np.linspace(0, 49)
cur_state = libmpc_py.ffi.new("state_t *")
cur_state[0].x = 0.0
cur_state[0].y = 0.5
cur_state[0].psi = 0.0
cur_state[0].delta = 0.0
xs = []
ys = []
deltas = []
titles = [
'Steer rate cost',
'Heading cost',
'Lane cost',
'Path cost',
]
# Steer rate cost
sol_x = OrderedDict()
sol_y = OrderedDict()
delta = OrderedDict()
for cost in np.logspace(-1, 1.0, 5):
libmpc.init(1.0, 3.0, 1.0, cost)
for _ in range(10):
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
curvature_factor, v_ref, LANE_WIDTH)
sol_x[cost] = map(float, list(mpc_solution[0].x))
sol_y[cost] = map(float, list(mpc_solution[0].y))
delta[cost] = map(float, list(mpc_solution[0].delta))
xs.append(sol_x)
ys.append(sol_y)
deltas.append(delta)
# Heading cost
sol_x = OrderedDict()
sol_y = OrderedDict()
delta = OrderedDict()
for cost in np.logspace(-1, 1.0, 5):
libmpc.init(1.0, 3.0, cost, 1.0)
for _ in range(10):
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
curvature_factor, v_ref, LANE_WIDTH)
sol_x[cost] = map(float, list(mpc_solution[0].x))
sol_y[cost] = map(float, list(mpc_solution[0].y))
delta[cost] = map(float, list(mpc_solution[0].delta))
xs.append(sol_x)
ys.append(sol_y)
deltas.append(delta)
# Lane cost
sol_x = OrderedDict()
sol_y = OrderedDict()
delta = OrderedDict()
for cost in np.logspace(-1, 2.0, 5):
libmpc.init(1.0, cost, 1.0, 1.0)
for _ in range(10):
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
curvature_factor, v_ref, LANE_WIDTH)
sol_x[cost] = map(float, list(mpc_solution[0].x))
sol_y[cost] = map(float, list(mpc_solution[0].y))
delta[cost] = map(float, list(mpc_solution[0].delta))
xs.append(sol_x)
ys.append(sol_y)
deltas.append(delta)
# Path cost
sol_x = OrderedDict()
sol_y = OrderedDict()
delta = OrderedDict()
for cost in np.logspace(-1, 1.0, 5):
libmpc.init(cost, 3.0, 1.0, 1.0)
for _ in range(10):
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
curvature_factor, v_ref, LANE_WIDTH)
sol_x[cost] = map(float, list(mpc_solution[0].x))
sol_y[cost] = map(float, list(mpc_solution[0].y))
delta[cost] = map(float, list(mpc_solution[0].delta))
xs.append(sol_x)
ys.append(sol_y)
deltas.append(delta)
plt.figure()
for i in range(len(xs)):
ax = plt.subplot(2, 2, i + 1)
sol_x = xs[i]
sol_y = ys[i]
for cost in sol_x.keys():
plt.plot(sol_x[cost], sol_y[cost])
plt.plot(lanes_x, points_r, '.b')
plt.plot(lanes_x, points_l, '.b')
plt.plot(lanes_x, (points_l + points_r) / 2.0, '--g')
plt.plot(mpc_x_points, points_poly_l, 'b')
plt.plot(mpc_x_points, points_poly_r, 'b')
plt.plot(mpc_x_points, (points_poly_l + points_poly_r) / 2.0, 'g')
plt.legend(map(lambda x: str(round(x, 2)), sol_x.keys()) + ['right', 'left', 'center'], loc=3)
plt.title(titles[i])
plt.grid(True)
# ax.set_aspect('equal', 'datalim')
plt.figure()
for i in range(len(xs)):
plt.subplot(2, 2, i + 1)
sol_x = xs[i]
delta = deltas[i]
for cost in sol_x.keys():
plt.plot(delta[cost])
plt.title(titles[i])
plt.legend(map(lambda x: str(round(x, 2)), sol_x.keys()), loc=3)
plt.grid(True)
plt.show()