openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

565 lines
18 KiB

import os
from bisect import bisect_right
import sympy as sp
import numpy as np
from numpy import dot
from common.ffi_wrapper import compile_code, wrap_compiled
from common.sympy_helpers import sympy_into_c
import scipy
from scipy.stats import chi2
EXTERNAL_PATH = os.path.dirname(os.path.abspath(__file__))
def solve(a, b):
if a.shape[0] == 1 and a.shape[1] == 1:
#assert np.allclose(b/a[0][0], np.linalg.solve(a, b))
return b/a[0][0]
else:
return np.linalg.solve(a, b)
def null(H, eps=1e-12):
from scipy import linalg
u, s, vh = linalg.svd(H)
padding = max(0,np.shape(H)[1]-np.shape(s)[0])
null_mask = np.concatenate(((s <= eps), np.ones((padding,),dtype=bool)),axis=0)
null_space = scipy.compress(null_mask, vh, axis=0)
return scipy.transpose(null_space)
def gen_code(name, f_sym, dt_sym, x_sym, obs_eqs, dim_x, dim_err, eskf_params=None, msckf_params=None, maha_test_kinds=[]):
# optional state transition matrix, H modifier
# and err_function if an error-state kalman filter (ESKF)
# is desired. Best described in "Quaternion kinematics
# for the error-state Kalman filter" by Joan Sola
if eskf_params:
err_eqs = eskf_params[0]
inv_err_eqs = eskf_params[1]
H_mod_sym = eskf_params[2]
f_err_sym = eskf_params[3]
x_err_sym = eskf_params[4]
else:
nom_x = sp.MatrixSymbol('nom_x',dim_x,1)
true_x = sp.MatrixSymbol('true_x',dim_x,1)
delta_x = sp.MatrixSymbol('delta_x',dim_x,1)
err_function_sym = sp.Matrix(nom_x + delta_x)
inv_err_function_sym = sp.Matrix(true_x - nom_x)
err_eqs = [err_function_sym, nom_x, delta_x]
inv_err_eqs = [inv_err_function_sym, nom_x, true_x]
H_mod_sym = sp.Matrix(np.eye(dim_x))
f_err_sym = f_sym
x_err_sym = x_sym
# This configures the multi-state augmentation
# needed for EKF-SLAM with MSCKF (Mourikis et al 2007)
if msckf_params:
msckf = True
dim_main = msckf_params[0] # size of the main state
dim_augment = msckf_params[1] # size of one augment state chunk
dim_main_err = msckf_params[2]
dim_augment_err = msckf_params[3]
N = msckf_params[4]
feature_track_kinds = msckf_params[5]
assert dim_main + dim_augment*N == dim_x
assert dim_main_err + dim_augment_err*N == dim_err
else:
msckf = False
dim_main = dim_x
dim_augment = 0
dim_main_err = dim_err
dim_augment_err = 0
N = 0
# linearize with jacobians
F_sym = f_err_sym.jacobian(x_err_sym)
for sym in x_err_sym:
F_sym = F_sym.subs(sym, 0)
for i in xrange(len(obs_eqs)):
obs_eqs[i].append(obs_eqs[i][0].jacobian(x_sym))
if msckf and obs_eqs[i][1] in feature_track_kinds:
obs_eqs[i].append(obs_eqs[i][0].jacobian(obs_eqs[i][2]))
else:
obs_eqs[i].append(None)
# collect sympy functions
sympy_functions = []
# error functions
sympy_functions.append(('err_fun', err_eqs[0], [err_eqs[1], err_eqs[2]]))
sympy_functions.append(('inv_err_fun', inv_err_eqs[0], [inv_err_eqs[1], inv_err_eqs[2]]))
# H modifier for ESKF updates
sympy_functions.append(('H_mod_fun', H_mod_sym, [x_sym]))
# state propagation function
sympy_functions.append(('f_fun', f_sym, [x_sym, dt_sym]))
sympy_functions.append(('F_fun', F_sym, [x_sym, dt_sym]))
# observation functions
for h_sym, kind, ea_sym, H_sym, He_sym in obs_eqs:
sympy_functions.append(('h_%d' % kind, h_sym, [x_sym, ea_sym]))
sympy_functions.append(('H_%d' % kind, H_sym, [x_sym, ea_sym]))
if msckf and kind in feature_track_kinds:
sympy_functions.append(('He_%d' % kind, He_sym, [x_sym, ea_sym]))
# Generate and wrap all th c code
header, code = sympy_into_c(sympy_functions)
extra_header = "#define DIM %d\n" % dim_x
extra_header += "#define EDIM %d\n" % dim_err
extra_header += "#define MEDIM %d\n" % dim_main_err
extra_header += "typedef void (*Hfun)(double *, double *, double *);\n"
extra_header += "\nvoid predict(double *x, double *P, double *Q, double dt);"
extra_post = ""
for h_sym, kind, ea_sym, H_sym, He_sym in obs_eqs:
if msckf and kind in feature_track_kinds:
He_str = 'He_%d' % kind
# ea_dim = ea_sym.shape[0]
else:
He_str = 'NULL'
# ea_dim = 1 # not really dim of ea but makes c function work
maha_thresh = chi2.ppf(0.95, int(h_sym.shape[0])) # mahalanobis distance for outlier detection
maha_test = kind in maha_test_kinds
extra_post += """
void update_%d(double *in_x, double *in_P, double *in_z, double *in_R, double *in_ea) {
update<%d,%d,%d>(in_x, in_P, h_%d, H_%d, %s, in_z, in_R, in_ea, MAHA_THRESH_%d);
}
""" % (kind, h_sym.shape[0], 3, maha_test, kind, kind, He_str, kind)
extra_header += "\nconst static double MAHA_THRESH_%d = %f;" % (kind, maha_thresh)
extra_header += "\nvoid update_%d(double *, double *, double *, double *, double *);" % kind
code += "\n" + extra_header
code += "\n" + open(os.path.join(EXTERNAL_PATH, "ekf_c.c")).read()
code += "\n" + extra_post
header += "\n" + extra_header
compile_code(name, code, header, EXTERNAL_PATH)
class EKF_sym(object):
def __init__(self, name, Q, x_initial, P_initial, dim_main, dim_main_err,
N=0, dim_augment=0, dim_augment_err=0, maha_test_kinds=[]):
'''
Generates process function and all
observation functions for the kalman
filter.
'''
if N > 0:
self.msckf = True
else:
self.msckf = False
self.N = N
self.dim_augment = dim_augment
self.dim_augment_err = dim_augment_err
self.dim_main = dim_main
self.dim_main_err = dim_main_err
# state
x_initial = x_initial.reshape((-1, 1))
self.dim_x = x_initial.shape[0]
self.dim_err = P_initial.shape[0]
assert dim_main + dim_augment*N == self.dim_x
assert dim_main_err + dim_augment_err*N == self.dim_err
# kinds that should get mahalanobis distance
# tested for outlier rejection
self.maha_test_kinds = maha_test_kinds
# process noise
self.Q = Q
# rewind stuff
self.rewind_t = []
self.rewind_states = []
self.rewind_obscache = []
self.init_state(x_initial, P_initial, None)
ffi, lib = wrap_compiled(name, EXTERNAL_PATH)
kinds, self.feature_track_kinds = [], []
for func in dir(lib):
if func[:2] == 'h_':
kinds.append(int(func[2:]))
if func[:3] == 'He_':
self.feature_track_kinds.append(int(func[3:]))
# wrap all the sympy functions
def wrap_1lists(name):
func = eval("lib.%s" % name, {"lib":lib})
def ret(lst1, out):
func(ffi.cast("double *", lst1.ctypes.data),
ffi.cast("double *", out.ctypes.data))
return ret
def wrap_2lists(name):
func = eval("lib.%s" % name, {"lib":lib})
def ret(lst1, lst2, out):
func(ffi.cast("double *", lst1.ctypes.data),
ffi.cast("double *", lst2.ctypes.data),
ffi.cast("double *", out.ctypes.data))
return ret
def wrap_1list_1float(name):
func = eval("lib.%s" % name, {"lib":lib})
def ret(lst1, fl, out):
func(ffi.cast("double *", lst1.ctypes.data),
ffi.cast("double", fl),
ffi.cast("double *", out.ctypes.data))
return ret
self.f = wrap_1list_1float("f_fun")
self.F = wrap_1list_1float("F_fun")
self.err_function = wrap_2lists("err_fun")
self.inv_err_function = wrap_2lists("inv_err_fun")
self.H_mod = wrap_1lists("H_mod_fun")
self.hs, self.Hs, self.Hes = {}, {}, {}
for kind in kinds:
self.hs[kind] = wrap_2lists("h_%d" % kind)
self.Hs[kind] = wrap_2lists("H_%d" % kind)
if self.msckf and kind in self.feature_track_kinds:
self.Hes[kind] = wrap_2lists("He_%d" % kind)
# wrap the C++ predict function
def _predict_blas(x, P, dt):
lib.predict(ffi.cast("double *", x.ctypes.data),
ffi.cast("double *", P.ctypes.data),
ffi.cast("double *", self.Q.ctypes.data),
ffi.cast("double", dt))
return x, P
# wrap the C++ update function
def fun_wrapper(f, kind):
f = eval("lib.%s" % f, {"lib": lib})
def _update_inner_blas(x, P, z, R, extra_args):
f(ffi.cast("double *", x.ctypes.data),
ffi.cast("double *", P.ctypes.data),
ffi.cast("double *", z.ctypes.data),
ffi.cast("double *", R.ctypes.data),
ffi.cast("double *", extra_args.ctypes.data))
if self.msckf and kind in self.feature_track_kinds:
y = z[:-len(extra_args)]
else:
y = z
return x, P, y
return _update_inner_blas
self._updates = {}
for kind in kinds:
self._updates[kind] = fun_wrapper("update_%d" % kind, kind)
def _update_blas(x, P, kind, z, R, extra_args=[]):
return self._updates[kind](x, P, z, R, extra_args)
# assign the functions
self._predict = _predict_blas
#self._predict = self._predict_python
self._update = _update_blas
#self._update = self._update_python
def init_state(self, state, covs, filter_time):
self.x = np.array(state.reshape((-1, 1))).astype(np.float64)
self.P = np.array(covs).astype(np.float64)
self.filter_time = filter_time
self.augment_times = [0]*self.N
self.rewind_obscache = []
self.rewind_t = []
self.rewind_states = []
def augment(self):
# TODO this is not a generalized way of doing
# this and implies that the augmented states
# are simply the first (dim_augment_state)
# elements of the main state.
assert self.msckf
d1 = self.dim_main
d2 = self.dim_main_err
d3 = self.dim_augment
d4 = self.dim_augment_err
# push through augmented states
self.x[d1:-d3] = self.x[d1+d3:]
self.x[-d3:] = self.x[:d3]
assert self.x.shape == (self.dim_x, 1)
# push through augmented covs
assert self.P.shape == (self.dim_err, self.dim_err)
P_reduced = self.P
P_reduced = np.delete(P_reduced, np.s_[d2:d2+d4], axis=1)
P_reduced = np.delete(P_reduced, np.s_[d2:d2+d4], axis=0)
assert P_reduced.shape == (self.dim_err -d4, self.dim_err -d4)
to_mult = np.zeros((self.dim_err, self.dim_err - d4))
to_mult[:-d4,:] = np.eye(self.dim_err - d4)
to_mult[-d4:,:d4] = np.eye(d4)
self.P = to_mult.dot(P_reduced.dot(to_mult.T))
self.augment_times = self.augment_times[1:]
self.augment_times.append(self.filter_time)
assert self.P.shape == (self.dim_err, self.dim_err)
def state(self):
return np.array(self.x).flatten()
def covs(self):
return self.P
def rewind(self, t):
# find where we are rewinding to
idx = bisect_right(self.rewind_t, t)
assert self.rewind_t[idx-1] <= t
assert self.rewind_t[idx] > t # must be true, or rewind wouldn't be called
# set the state to the time right before that
self.filter_time = self.rewind_t[idx-1]
self.x[:] = self.rewind_states[idx-1][0]
self.P[:] = self.rewind_states[idx-1][1]
# return the observations we rewound over for fast forwarding
ret = self.rewind_obscache[idx:]
# throw away the old future
# TODO: is this making a copy?
self.rewind_t = self.rewind_t[:idx]
self.rewind_states = self.rewind_states[:idx]
self.rewind_obscache = self.rewind_obscache[:idx]
return ret
def checkpoint(self, obs):
# push to rewinder
self.rewind_t.append(self.filter_time)
self.rewind_states.append((np.copy(self.x), np.copy(self.P)))
self.rewind_obscache.append(obs)
# only keep a certain number around
REWIND_TO_KEEP = 512
self.rewind_t = self.rewind_t[-REWIND_TO_KEEP:]
self.rewind_states = self.rewind_states[-REWIND_TO_KEEP:]
self.rewind_obscache = self.rewind_obscache[-REWIND_TO_KEEP:]
def predict_and_update_batch(self, t, kind, z, R, extra_args=[[]], augment=False):
# TODO handle rewinding at this level"
# rewind
if t < self.filter_time:
if len(self.rewind_t) == 0 or t < self.rewind_t[0] or t < self.rewind_t[-1] -1.0:
print "observation too old at %.3f with filter at %.3f, ignoring" % (t, self.filter_time)
return None
rewound = self.rewind(t)
else:
rewound = []
ret = self._predict_and_update_batch(t, kind, z, R, extra_args, augment)
# optional fast forward
for r in rewound:
self._predict_and_update_batch(*r)
return ret
def _predict_and_update_batch(self, t, kind, z, R, extra_args, augment=False):
"""The main kalman filter function
Predicts the state and then updates a batch of observations
dim_x: dimensionality of the state space
dim_z: dimensionality of the observation and depends on kind
n: number of observations
Args:
t (float): Time of observation
kind (int): Type of observation
z (vec [n,dim_z]): Measurements
R (mat [n,dim_z, dim_z]): Measurement Noise
extra_args (list, [n]): Values used in H computations
"""
# initialize time
if self.filter_time is None:
self.filter_time = t
# predict
dt = t - self.filter_time
assert dt >= 0
self.x, self.P = self._predict(self.x, self.P, dt)
self.filter_time = t
xk_km1, Pk_km1 = np.copy(self.x).flatten(), np.copy(self.P)
# update batch
y = []
for i in xrange(len(z)):
# these are from the user, so we canonicalize them
z_i = np.array(z[i], dtype=np.float64, order='F')
R_i = np.array(R[i], dtype=np.float64, order='F')
extra_args_i = np.array(extra_args[i], dtype=np.float64, order='F')
# update
self.x, self.P, y_i = self._update(self.x, self.P, kind, z_i, R_i, extra_args=extra_args_i)
y.append(y_i)
xk_k, Pk_k = np.copy(self.x).flatten(), np.copy(self.P)
if augment:
self.augment()
# checkpoint
self.checkpoint((t, kind, z, R, extra_args))
return xk_km1, xk_k, Pk_km1, Pk_k, t, kind, y, z, extra_args
def _predict_python(self, x, P, dt):
x_new = np.zeros(x.shape, dtype=np.float64)
self.f(x, dt, x_new)
F = np.zeros(P.shape, dtype=np.float64)
self.F(x, dt, F)
if not self.msckf:
P = dot(dot(F, P), F.T)
else:
# Update the predicted state covariance:
# Pk+1|k = |F*Pii*FT + Q*dt F*Pij |
# |PijT*FT Pjj |
# Where F is the jacobian of the main state
# predict function, Pii is the main state's
# covariance and Q its process noise. Pij
# is the covariance between the augmented
# states and the main state.
#
d2 = self.dim_main_err # known at compile time
F_curr = F[:d2, :d2]
P[:d2, :d2] = (F_curr.dot(P[:d2, :d2])).dot(F_curr.T)
P[:d2, d2:] = F_curr.dot(P[:d2, d2:])
P[d2:, :d2] = P[d2:, :d2].dot(F_curr.T)
P += dt*self.Q
return x_new, P
def _update_python(self, x, P, kind, z, R, extra_args=[]):
# init vars
z = z.reshape((-1, 1))
h = np.zeros(z.shape, dtype=np.float64)
H = np.zeros((z.shape[0], self.dim_x), dtype=np.float64)
# C functions
self.hs[kind](x, extra_args, h)
self.Hs[kind](x, extra_args, H)
# y is the "loss"
y = z - h
# *** same above this line ***
if self.msckf and kind in self.Hes:
# Do some algebraic magic to decorrelate
He = np.zeros((z.shape[0], len(extra_args)), dtype=np.float64)
self.Hes[kind](x, extra_args, He)
# TODO: Don't call a function here, do projection locally
A = null(He.T)
y = A.T.dot(y)
H = A.T.dot(H)
R = A.T.dot(R.dot(A))
# TODO If nullspace isn't the dimension we want
if A.shape[1] + He.shape[1] != A.shape[0]:
print 'Warning: null space projection failed, measurement ignored'
return x, P, np.zeros(A.shape[0] - He.shape[1])
# if using eskf
H_mod = np.zeros((x.shape[0], P.shape[0]), dtype=np.float64)
self.H_mod(x, H_mod)
H = H.dot(H_mod)
# Do mahalobis distance test
# currently just runs on msckf observations
# could run on anything if needed
if self.msckf and kind in self.maha_test_kinds:
a = np.linalg.inv(H.dot(P).dot(H.T) + R)
maha_dist = y.T.dot(a.dot(y))
if maha_dist > chi2.ppf(0.95, y.shape[0]):
R = 10e16*R
# *** same below this line ***
# Outlier resilient weighting as described in:
# "A Kalman Filter for Robust Outlier Detection - Jo-Anne Ting, ..."
weight = 1 #(1.5)/(1 + np.sum(y**2)/np.sum(R))
S = dot(dot(H, P), H.T) + R/weight
K = solve(S, dot(H, P.T)).T
I_KH = np.eye(P.shape[0]) - dot(K, H)
# update actual state
delta_x = dot(K, y)
P = dot(dot(I_KH, P), I_KH.T) + dot(dot(K, R), K.T)
# inject observed error into state
x_new = np.zeros(x.shape, dtype=np.float64)
self.err_function(x, delta_x, x_new)
return x_new, P, y.flatten()
def maha_test(self, x, P, kind, z, R, extra_args=[], maha_thresh=0.95):
# init vars
z = z.reshape((-1, 1))
h = np.zeros(z.shape, dtype=np.float64)
H = np.zeros((z.shape[0], self.dim_x), dtype=np.float64)
# C functions
self.hs[kind](x, extra_args, h)
self.Hs[kind](x, extra_args, H)
# y is the "loss"
y = z - h
# if using eskf
H_mod = np.zeros((x.shape[0], P.shape[0]), dtype=np.float64)
self.H_mod(x, H_mod)
H = H.dot(H_mod)
a = np.linalg.inv(H.dot(P).dot(H.T) + R)
maha_dist = y.T.dot(a.dot(y))
if maha_dist > chi2.ppf(maha_thresh, y.shape[0]):
return False
else:
return True
def rts_smooth(self, estimates, norm_quats=False):
'''
Returns rts smoothed results of
kalman filter estimates
If the kalman state is augmented with
old states only the main state is smoothed
'''
xk_n = estimates[-1][0]
Pk_n = estimates[-1][2]
Fk_1 = np.zeros(Pk_n.shape, dtype=np.float64)
states_smoothed = [xk_n]
covs_smoothed = [Pk_n]
for k in xrange(len(estimates) - 2, -1, -1):
xk1_n = xk_n
if norm_quats:
xk1_n[3:7] /= np.linalg.norm(xk1_n[3:7])
Pk1_n = Pk_n
xk1_k, _, Pk1_k, _, t2, _, _, _, _ = estimates[k + 1]
_, xk_k, _, Pk_k, t1, _, _, _, _ = estimates[k]
dt = t2 - t1
self.F(xk_k, dt, Fk_1)
d1 = self.dim_main
d2 = self.dim_main_err
Ck = np.linalg.solve(Pk1_k[:d2,:d2], Fk_1[:d2,:d2].dot(Pk_k[:d2,:d2].T)).T
xk_n = xk_k
delta_x = np.zeros((Pk_n.shape[0], 1), dtype=np.float64)
self.inv_err_function(xk1_k, xk1_n, delta_x)
delta_x[:d2] = Ck.dot(delta_x[:d2])
x_new = np.zeros((xk_n.shape[0], 1), dtype=np.float64)
self.err_function(xk_k, delta_x, x_new)
xk_n[:d1] = x_new[:d1,0]
Pk_n = Pk_k
Pk_n[:d2,:d2] = Pk_k[:d2,:d2] + Ck.dot(Pk1_n[:d2,:d2] - Pk1_k[:d2,:d2]).dot(Ck.T)
states_smoothed.append(xk_n)
covs_smoothed.append(Pk_n)
return np.flipud(np.vstack(states_smoothed)), np.stack(covs_smoothed, 0)[::-1]