# include "system/camerad/sensors/sensor.h"
namespace {
const float sensor_analog_gains_OS04C10 [ ] = {
1.0 , 1.0625 , 1.125 , 1.1875 , 1.25 , 1.3125 , 1.375 , 1.4375 , 1.5 , 1.5625 , 1.6875 ,
1.8125 , 1.9375 , 2.0 , 2.125 , 2.25 , 2.375 , 2.5 , 2.625 , 2.75 , 2.875 , 3.0 ,
3.125 , 3.375 , 3.625 , 3.875 , 4.0 , 4.25 , 4.5 , 4.75 , 5.0 , 5.25 , 5.5 ,
5.75 , 6.0 , 6.25 , 6.5 , 7.0 , 7.5 , 8.0 , 8.5 , 9.0 , 9.5 , 10.0 ,
10.5 , 11.0 , 11.5 , 12.0 , 12.5 , 13.0 , 13.5 , 14.0 , 14.5 , 15.0 , 15.5 } ;
const uint32_t os04c10_analog_gains_reg [ ] = {
0x100 , 0x110 , 0x120 , 0x130 , 0x140 , 0x150 , 0x160 , 0x170 , 0x180 , 0x190 , 0x1B0 ,
0x1D0 , 0x1F0 , 0x200 , 0x220 , 0x240 , 0x260 , 0x280 , 0x2A0 , 0x2C0 , 0x2E0 , 0x300 ,
0x320 , 0x360 , 0x3A0 , 0x3E0 , 0x400 , 0x440 , 0x480 , 0x4C0 , 0x500 , 0x540 , 0x580 ,
0x5C0 , 0x600 , 0x640 , 0x680 , 0x700 , 0x780 , 0x800 , 0x880 , 0x900 , 0x980 , 0xA00 ,
0xA80 , 0xB00 , 0xB80 , 0xC00 , 0xC80 , 0xD00 , 0xD80 , 0xE00 , 0xE80 , 0xF00 , 0xF80 } ;
const uint32_t VS_TIME_MIN_OS04C10 = 1 ;
//const uint32_t VS_TIME_MAX_OS04C10 = 34; // vs < 35
} // namespace
OS04C10 : : OS04C10 ( ) {
image_sensor = cereal : : FrameData : : ImageSensor : : OS04C10 ;
data_word = false ;
frame_width = 2688 ;
frame_height = 1520 ;
frame_stride = ( frame_width * 10 / 8 ) ;
/*
frame_width = 0xa80 ;
frame_height = 0x5f0 ;
frame_stride = 0xd20 ;
*/
extra_height = 0 ;
frame_offset = 0 ;
start_reg_array . assign ( std : : begin ( start_reg_array_os04c10 ) , std : : end ( start_reg_array_os04c10 ) ) ;
init_reg_array . assign ( std : : begin ( init_array_os04c10 ) , std : : end ( init_array_os04c10 ) ) ;
probe_reg_addr = 0x300a ;
probe_expected_data = 0x5304 ;
mipi_format = CAM_FORMAT_MIPI_RAW_10 ;
frame_data_type = 0x2b ;
mclk_frequency = 24000000 ; // Hz
dc_gain_factor = 7.32 ;
dc_gain_min_weight = 1 ; // always on is fine
dc_gain_max_weight = 1 ;
dc_gain_on_grey = 0.9 ;
dc_gain_off_grey = 1.0 ;
exposure_time_min = 2 ; // 1x
exposure_time_max = 2016 ;
analog_gain_min_idx = 0x0 ;
analog_gain_rec_idx = 0x0 ; // 1x
analog_gain_max_idx = 0x36 ;
analog_gain_cost_delta = - 1 ;
analog_gain_cost_low = 0.4 ;
analog_gain_cost_high = 6.4 ;
for ( int i = 0 ; i < = analog_gain_max_idx ; i + + ) {
sensor_analog_gains [ i ] = sensor_analog_gains_OS04C10 [ i ] ;
}
min_ev = ( exposure_time_min + VS_TIME_MIN_OS04C10 ) * sensor_analog_gains [ analog_gain_min_idx ] ;
max_ev = exposure_time_max * dc_gain_factor * sensor_analog_gains [ analog_gain_max_idx ] ;
target_grey_factor = 0.01 ;
}
std : : vector < i2c_random_wr_payload > OS04C10 : : getExposureRegisters ( int exposure_time , int new_exp_g , bool dc_gain_enabled ) const {
// t_HCG&t_LCG + t_VS on LPD, t_SPD on SPD
uint32_t hcg_time = exposure_time ;
//uint32_t lcg_time = hcg_time;
//uint32_t spd_time = std::min(std::max((uint32_t)exposure_time, (exposure_time_max + VS_TIME_MAX_OS04C10) / 3), exposure_time_max + VS_TIME_MAX_OS04C10);
//uint32_t vs_time = std::min(std::max((uint32_t)exposure_time / 40, VS_TIME_MIN_OS04C10), VS_TIME_MAX_OS04C10);
uint32_t real_gain = os04c10_analog_gains_reg [ new_exp_g ] ;
hcg_time = 100 ;
real_gain = 0x0 ;
return {
//{0x3501, hcg_time>>8}, {0x3502, hcg_time&0xFF},
//{0x3581, lcg_time>>8}, {0x3582, lcg_time&0xFF},
//{0x3541, spd_time>>8}, {0x3542, spd_time&0xFF},
//{0x35c2, vs_time&0xFF},
//{0x3508, real_gain>>8}, {0x3509, real_gain&0xFF},
} ;
}
int OS04C10 : : getSlaveAddress ( int port ) const {
assert ( port > = 0 & & port < = 2 ) ;
return ( int [ ] ) { 0x6C , 0x20 , 0x6C } [ port ] ;
}
float OS04C10 : : getExposureScore ( float desired_ev , int exp_t , int exp_g_idx , float exp_gain , int gain_idx ) const {
float score = std : : abs ( desired_ev - ( exp_t * exp_gain ) ) ;
float m = exp_g_idx > analog_gain_rec_idx ? analog_gain_cost_high : analog_gain_cost_low ;
score + = std : : abs ( exp_g_idx - ( int ) analog_gain_rec_idx ) * m ;
score + = ( ( 1 - analog_gain_cost_delta ) +
analog_gain_cost_delta * ( exp_g_idx - analog_gain_min_idx ) / ( analog_gain_max_idx - analog_gain_min_idx ) ) *
std : : abs ( exp_g_idx - gain_idx ) * 5.0 ;
return score ;
}