openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

107 lines
3.7 KiB

from common.numpy_fast import interp
import numpy as np
from cereal import log
CAMERA_OFFSET = 0.06 # m from center car to camera
def compute_path_pinv(length=50):
deg = 3
x = np.arange(length*1.0)
X = np.vstack(tuple(x**n for n in range(deg, -1, -1))).T
pinv = np.linalg.pinv(X)
return pinv
def model_polyfit(points, path_pinv):
return np.dot(path_pinv, [float(x) for x in points])
def eval_poly(poly, x):
return poly[3] + poly[2]*x + poly[1]*x**2 + poly[0]*x**3
class LanePlanner:
def __init__(self):
self.l_poly = [0., 0., 0., 0.]
self.r_poly = [0., 0., 0., 0.]
self.p_poly = [0., 0., 0., 0.]
self.d_poly = [0., 0., 0., 0.]
self.lane_width_estimate = 3.7
self.lane_width_certainty = 1.0
self.lane_width = 3.7
self.l_prob = 0.
self.r_prob = 0.
self.l_std = 0.
self.r_std = 0.
self.l_lane_change_prob = 0.
self.r_lane_change_prob = 0.
self._path_pinv = compute_path_pinv()
self.x_points = np.arange(50)
def parse_model(self, md):
if len(md.leftLane.poly):
self.l_poly = np.array(md.leftLane.poly)
self.l_std = float(md.leftLane.std)
self.r_poly = np.array(md.rightLane.poly)
self.r_std = float(md.rightLane.std)
self.p_poly = np.array(md.path.poly)
else:
self.l_poly = model_polyfit(md.leftLane.points, self._path_pinv) # left line
self.r_poly = model_polyfit(md.rightLane.points, self._path_pinv) # right line
self.p_poly = model_polyfit(md.path.points, self._path_pinv) # predicted path
self.l_prob = md.leftLane.prob # left line prob
self.r_prob = md.rightLane.prob # right line prob
if len(md.meta.desireState):
self.l_lane_change_prob = md.meta.desireState[log.PathPlan.Desire.laneChangeLeft - 1]
self.r_lane_change_prob = md.meta.desireState[log.PathPlan.Desire.laneChangeRight - 1]
def update_d_poly(self, v_ego):
# only offset left and right lane lines; offsetting p_poly does not make sense
self.l_poly[3] += CAMERA_OFFSET
self.r_poly[3] += CAMERA_OFFSET
# Find current lanewidth
self.lane_width_certainty += 0.05 * (self.l_prob * self.r_prob - self.lane_width_certainty)
current_lane_width = abs(self.l_poly[3] - self.r_poly[3])
self.lane_width_estimate += 0.005 * (current_lane_width - self.lane_width_estimate)
speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \
(1 - self.lane_width_certainty) * speed_lane_width
# This will improve behaviour when lanes suddenly widen
# these numbers were tested on 2000 segments and found to work well
l_prob, r_prob = self.l_prob, self.r_prob
width_poly = self.l_poly - self.r_poly
prob_mods = []
for t_check in [0.0, 1.5, 3.0]:
width_at_t = eval_poly(width_poly, t_check * (v_ego + 7))
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
mod = min(prob_mods)
l_prob *= mod
r_prob *= mod
# Remove reliance on uncertain lanelines
# these numbers were tested on 2000 segments and found to work well
l_std_mod = interp(self.l_std, [.15, .3], [1.0, 0.0])
r_std_mod = interp(self.r_std, [.15, .3], [1.0, 0.0])
l_prob *= l_std_mod
r_prob *= r_std_mod
clipped_lane_width = min(4.0, self.lane_width)
path_from_left_lane = self.l_poly.copy()
path_from_left_lane[3] -= clipped_lane_width / 2.0
path_from_right_lane = self.r_poly.copy()
path_from_right_lane[3] += clipped_lane_width / 2.0
lr_prob = l_prob + r_prob - l_prob * r_prob
d_poly_lane = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
self.d_poly = lr_prob * d_poly_lane + (1.0 - lr_prob) * self.p_poly.copy()