#!/usr/bin/env python3
import math
from bisect import bisect_right
import numpy as np
import cereal . messaging as messaging
import common . transformations . coordinates as coord
from common . transformations . orientation import ( ecef_euler_from_ned ,
euler2quat ,
ned_euler_from_ecef ,
quat2euler ,
rotations_from_quats )
from selfdrive . locationd . kalman . helpers import ObservationKind , KalmanError
from selfdrive . locationd . kalman . models . live_kf import LiveKalman , States
from selfdrive . swaglog import cloudlog
SENSOR_DECIMATION = 1 # No decimation
class Localizer ( ) :
def __init__ ( self , disabled_logs = [ ] , dog = None ) :
self . kf = LiveKalman ( )
self . reset_kalman ( )
self . max_age = .2 # seconds
self . disabled_logs = disabled_logs
def liveLocationMsg ( self , time ) :
fix = messaging . log . LiveLocationData . new_message ( )
predicted_state = self . kf . x
fix_ecef = predicted_state [ States . ECEF_POS ]
fix_pos_geo = coord . ecef2geodetic ( fix_ecef )
fix . lat = float ( fix_pos_geo [ 0 ] )
fix . lon = float ( fix_pos_geo [ 1 ] )
fix . alt = float ( fix_pos_geo [ 2 ] )
fix . speed = float ( np . linalg . norm ( predicted_state [ States . ECEF_VELOCITY ] ) )
orientation_ned_euler = ned_euler_from_ecef ( fix_ecef , quat2euler ( predicted_state [ States . ECEF_ORIENTATION ] ) )
fix . roll = math . degrees ( orientation_ned_euler [ 0 ] )
fix . pitch = math . degrees ( orientation_ned_euler [ 1 ] )
fix . heading = math . degrees ( orientation_ned_euler [ 2 ] )
fix . gyro = [ float ( predicted_state [ 10 ] ) , float ( predicted_state [ 11 ] ) , float ( predicted_state [ 12 ] ) ]
fix . accel = [ float ( predicted_state [ 19 ] ) , float ( predicted_state [ 20 ] ) , float ( predicted_state [ 21 ] ) ]
ned_vel = self . converter . ecef2ned ( predicted_state [ States . ECEF_POS ] + predicted_state [ States . ECEF_VELOCITY ] ) - self . converter . ecef2ned ( predicted_state [ States . ECEF_POS ] )
fix . vNED = [ float ( ned_vel [ 0 ] ) , float ( ned_vel [ 1 ] ) , float ( ned_vel [ 2 ] ) ]
fix . source = ' kalman '
#local_vel = rotations_from_quats(predicted_state[States.ECEF_ORIENTATION]).T.dot(predicted_state[States.ECEF_VELOCITY])
#fix.pitchCalibration = math.degrees(math.atan2(local_vel[2], local_vel[0]))
#fix.yawCalibration = math.degrees(math.atan2(local_vel[1], local_vel[0]))
imu_frame = predicted_state [ States . IMU_OFFSET ]
fix . imuFrame = [ math . degrees ( imu_frame [ 0 ] ) , math . degrees ( imu_frame [ 1 ] ) , math . degrees ( imu_frame [ 2 ] ) ]
return fix
def update_kalman ( self , time , kind , meas ) :
if self . filter_ready :
try :
self . kf . predict_and_observe ( time , kind , meas )
except KalmanError :
cloudlog . error ( " Error in predict and observe, kalman reset " )
self . reset_kalman ( )
#idx = bisect_right([x[0] for x in self.observation_buffer], time)
#self.observation_buffer.insert(idx, (time, kind, meas))
#while len(self.observation_buffer) > 0 and self.observation_buffer[-1][0] - self.observation_buffer[0][0] > self.max_age:
# else:
# self.observation_buffer.pop(0)
def handle_gps ( self , current_time , log ) :
self . converter = coord . LocalCoord . from_geodetic ( [ log . latitude , log . longitude , log . altitude ] )
fix_ecef = self . converter . ned2ecef ( [ 0 , 0 , 0 ] )
# TODO initing with bad bearing not allowed, maybe not bad?
if not self . filter_ready and log . speed > 5 :
self . filter_ready = True
initial_ecef = fix_ecef
gps_bearing = math . radians ( log . bearing )
initial_pose_ecef = ecef_euler_from_ned ( initial_ecef , [ 0 , 0 , gps_bearing ] )
initial_pose_ecef_quat = euler2quat ( initial_pose_ecef )
gps_speed = log . speed
quat_uncertainty = 0.2 * * 2
initial_pose_ecef_quat = euler2quat ( initial_pose_ecef )
initial_state = LiveKalman . initial_x
initial_covs_diag = LiveKalman . initial_P_diag
initial_state [ States . ECEF_POS ] = initial_ecef
initial_state [ States . ECEF_ORIENTATION ] = initial_pose_ecef_quat
initial_state [ States . ECEF_VELOCITY ] = rotations_from_quats ( initial_pose_ecef_quat ) . dot ( np . array ( [ gps_speed , 0 , 0 ] ) )
initial_covs_diag [ States . ECEF_POS_ERR ] = 10 * * 2
initial_covs_diag [ States . ECEF_ORIENTATION_ERR ] = quat_uncertainty
initial_covs_diag [ States . ECEF_VELOCITY_ERR ] = 1 * * 2
self . kf . init_state ( initial_state , covs = np . diag ( initial_covs_diag ) , filter_time = current_time )
cloudlog . info ( " Filter initialized " )
elif self . filter_ready :
self . update_kalman ( current_time , ObservationKind . ECEF_POS , fix_ecef )
gps_est_error = np . sqrt ( ( self . kf . x [ 0 ] - fix_ecef [ 0 ] ) * * 2 +
( self . kf . x [ 1 ] - fix_ecef [ 1 ] ) * * 2 +
( self . kf . x [ 2 ] - fix_ecef [ 2 ] ) * * 2 )
if gps_est_error > 50 :
cloudlog . error ( " Locationd vs ubloxLocation difference too large, kalman reset " )
self . reset_kalman ( )
def handle_car_state ( self , current_time , log ) :
self . speed_counter + = 1
if self . speed_counter % SENSOR_DECIMATION == 0 :
self . update_kalman ( current_time , ObservationKind . ODOMETRIC_SPEED , [ log . vEgo ] )
if log . vEgo == 0 :
self . update_kalman ( current_time , ObservationKind . NO_ROT , [ 0 , 0 , 0 ] )
def handle_cam_odo ( self , current_time , log ) :
self . update_kalman ( current_time ,
ObservationKind . CAMERA_ODO_ROTATION ,
np . concatenate ( [ log . rot , log . rotStd ] ) )
self . update_kalman ( current_time ,
ObservationKind . CAMERA_ODO_TRANSLATION ,
np . concatenate ( [ log . trans , log . transStd ] ) )
def handle_sensors ( self , current_time , log ) :
# TODO does not yet account for double sensor readings in the log
for sensor_reading in log :
# Gyro Uncalibrated
if sensor_reading . sensor == 5 and sensor_reading . type == 16 :
self . gyro_counter + = 1
if self . gyro_counter % SENSOR_DECIMATION == 0 :
if max ( abs ( self . kf . x [ States . IMU_OFFSET ] ) ) > 0.07 :
cloudlog . info ( ' imu frame angles exceeded, correcting ' )
self . update_kalman ( current_time , ObservationKind . IMU_FRAME , [ 0 , 0 , 0 ] )
v = sensor_reading . gyroUncalibrated . v
self . update_kalman ( current_time , ObservationKind . PHONE_GYRO , [ - v [ 2 ] , - v [ 1 ] , - v [ 0 ] ] )
# Accelerometer
if sensor_reading . sensor == 1 and sensor_reading . type == 1 :
self . acc_counter + = 1
if self . acc_counter % SENSOR_DECIMATION == 0 :
v = sensor_reading . acceleration . v
self . update_kalman ( current_time , ObservationKind . PHONE_ACCEL , [ - v [ 2 ] , - v [ 1 ] , - v [ 0 ] ] )
def reset_kalman ( self ) :
self . filter_time = None
self . filter_ready = False
self . observation_buffer = [ ]
self . gyro_counter = 0
self . acc_counter = 0
self . speed_counter = 0
def locationd_thread ( sm , pm , disabled_logs = [ ] ) :
if sm is None :
sm = messaging . SubMaster ( [ ' gpsLocationExternal ' , ' sensorEvents ' , ' cameraOdometry ' ] )
if pm is None :
pm = messaging . PubMaster ( [ ' liveLocation ' ] )
localizer = Localizer ( disabled_logs = disabled_logs )
while True :
sm . update ( )
for sock , updated in sm . updated . items ( ) :
if updated :
t = sm . logMonoTime [ sock ] * 1e-9
if sock == " sensorEvents " :
localizer . handle_sensors ( t , sm [ sock ] )
elif sock == " gpsLocationExternal " :
localizer . handle_gps ( t , sm [ sock ] )
elif sock == " carState " :
localizer . handle_car_state ( t , sm [ sock ] )
elif sock == " cameraOdometry " :
localizer . handle_cam_odo ( t , sm [ sock ] )
if localizer . filter_ready and sm . updated [ ' gpsLocationExternal ' ] :
t = sm . logMonoTime [ ' gpsLocationExternal ' ]
msg = messaging . new_message ( )
msg . logMonoTime = t
msg . init ( ' liveLocation ' )
msg . liveLocation = localizer . liveLocationMsg ( t * 1e-9 )
pm . send ( ' liveLocation ' , msg )
def main ( sm = None , pm = None ) :
locationd_thread ( sm , pm )
if __name__ == " __main__ " :
import os
os . environ [ " OMP_NUM_THREADS " ] = " 1 "
main ( )