You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					123 lines
				
				4.4 KiB
			
		
		
			
		
	
	
					123 lines
				
				4.4 KiB
			| 
											6 years ago
										 | import math
 | ||
|  | import numpy as np
 | ||
|  | 
 | ||
|  | from cereal import log
 | ||
|  | from common.realtime import DT_CTRL
 | ||
|  | from common.numpy_fast import clip
 | ||
|  | from selfdrive.car.toyota.values import SteerLimitParams
 | ||
|  | from selfdrive.car import apply_toyota_steer_torque_limits
 | ||
|  | from selfdrive.controls.lib.drive_helpers import get_steer_max
 | ||
|  | 
 | ||
|  | 
 | ||
|  | class LatControlINDI():
 | ||
|  |   def __init__(self, CP):
 | ||
|  |     self.angle_steers_des = 0.
 | ||
|  | 
 | ||
|  |     A = np.matrix([[1.0, DT_CTRL, 0.0],
 | ||
|  |                    [0.0, 1.0, DT_CTRL],
 | ||
|  |                    [0.0, 0.0, 1.0]])
 | ||
|  |     C = np.matrix([[1.0, 0.0, 0.0],
 | ||
|  |                    [0.0, 1.0, 0.0]])
 | ||
|  | 
 | ||
|  |     # Q = np.matrix([[1e-2, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 10.0]])
 | ||
|  |     # R = np.matrix([[1e-2, 0.0], [0.0, 1e3]])
 | ||
|  | 
 | ||
|  |     # (x, l, K) = control.dare(np.transpose(A), np.transpose(C), Q, R)
 | ||
|  |     # K = np.transpose(K)
 | ||
|  |     K = np.matrix([[7.30262179e-01, 2.07003658e-04],
 | ||
|  |                    [7.29394177e+00, 1.39159419e-02],
 | ||
|  |                    [1.71022442e+01, 3.38495381e-02]])
 | ||
|  | 
 | ||
|  |     self.K = K
 | ||
|  |     self.A_K = A - np.dot(K, C)
 | ||
|  |     self.x = np.matrix([[0.], [0.], [0.]])
 | ||
|  | 
 | ||
|  |     self.enforce_rate_limit = CP.carName == "toyota"
 | ||
|  | 
 | ||
|  |     self.RC = CP.lateralTuning.indi.timeConstant
 | ||
|  |     self.G = CP.lateralTuning.indi.actuatorEffectiveness
 | ||
|  |     self.outer_loop_gain = CP.lateralTuning.indi.outerLoopGain
 | ||
|  |     self.inner_loop_gain = CP.lateralTuning.indi.innerLoopGain
 | ||
|  |     self.alpha = 1. - DT_CTRL / (self.RC + DT_CTRL)
 | ||
|  | 
 | ||
|  |     self.sat_count_rate = 1.0 * DT_CTRL
 | ||
|  |     self.sat_limit = CP.steerLimitTimer
 | ||
|  | 
 | ||
|  |     self.reset()
 | ||
|  | 
 | ||
|  |   def reset(self):
 | ||
|  |     self.delayed_output = 0.
 | ||
|  |     self.output_steer = 0.
 | ||
|  |     self.sat_count = 0.0
 | ||
|  | 
 | ||
|  |   def _check_saturation(self, control, check_saturation, limit):
 | ||
|  |     saturated = abs(control) == limit
 | ||
|  | 
 | ||
|  |     if saturated and check_saturation:
 | ||
|  |       self.sat_count += self.sat_count_rate
 | ||
|  |     else:
 | ||
|  |       self.sat_count -= self.sat_count_rate
 | ||
|  | 
 | ||
|  |     self.sat_count = clip(self.sat_count, 0.0, 1.0)
 | ||
|  | 
 | ||
|  |     return self.sat_count > self.sat_limit
 | ||
|  | 
 | ||
|  |   def update(self, active, v_ego, angle_steers, angle_steers_rate, eps_torque, steer_override, rate_limited, CP, path_plan):
 | ||
|  |     # Update Kalman filter
 | ||
|  |     y = np.matrix([[math.radians(angle_steers)], [math.radians(angle_steers_rate)]])
 | ||
|  |     self.x = np.dot(self.A_K, self.x) + np.dot(self.K, y)
 | ||
|  | 
 | ||
|  |     indi_log = log.ControlsState.LateralINDIState.new_message()
 | ||
|  |     indi_log.steerAngle = math.degrees(self.x[0])
 | ||
|  |     indi_log.steerRate = math.degrees(self.x[1])
 | ||
|  |     indi_log.steerAccel = math.degrees(self.x[2])
 | ||
|  | 
 | ||
|  |     if v_ego < 0.3 or not active:
 | ||
|  |       indi_log.active = False
 | ||
|  |       self.output_steer = 0.0
 | ||
|  |       self.delayed_output = 0.0
 | ||
|  |     else:
 | ||
|  |       self.angle_steers_des = path_plan.angleSteers
 | ||
|  |       self.rate_steers_des = path_plan.rateSteers
 | ||
|  | 
 | ||
|  |       steers_des = math.radians(self.angle_steers_des)
 | ||
|  |       rate_des = math.radians(self.rate_steers_des)
 | ||
|  | 
 | ||
|  |       # Expected actuator value
 | ||
|  |       self.delayed_output = self.delayed_output * self.alpha + self.output_steer * (1. - self.alpha)
 | ||
|  | 
 | ||
|  |       # Compute acceleration error
 | ||
|  |       rate_sp = self.outer_loop_gain * (steers_des - self.x[0]) + rate_des
 | ||
|  |       accel_sp = self.inner_loop_gain * (rate_sp - self.x[1])
 | ||
|  |       accel_error = accel_sp - self.x[2]
 | ||
|  | 
 | ||
|  |       # Compute change in actuator
 | ||
|  |       g_inv = 1. / self.G
 | ||
|  |       delta_u = g_inv * accel_error
 | ||
|  | 
 | ||
|  |       # Enforce rate limit
 | ||
|  |       if self.enforce_rate_limit:
 | ||
|  |         steer_max = float(SteerLimitParams.STEER_MAX)
 | ||
|  |         new_output_steer_cmd = steer_max * (self.delayed_output + delta_u)
 | ||
|  |         prev_output_steer_cmd = steer_max * self.output_steer
 | ||
|  |         new_output_steer_cmd = apply_toyota_steer_torque_limits(new_output_steer_cmd, prev_output_steer_cmd, prev_output_steer_cmd, SteerLimitParams)
 | ||
|  |         self.output_steer = new_output_steer_cmd / steer_max
 | ||
|  |       else:
 | ||
|  |         self.output_steer = self.delayed_output + delta_u
 | ||
|  | 
 | ||
|  |       steers_max = get_steer_max(CP, v_ego)
 | ||
|  |       self.output_steer = clip(self.output_steer, -steers_max, steers_max)
 | ||
|  | 
 | ||
|  |       indi_log.active = True
 | ||
|  |       indi_log.rateSetPoint = float(rate_sp)
 | ||
|  |       indi_log.accelSetPoint = float(accel_sp)
 | ||
|  |       indi_log.accelError = float(accel_error)
 | ||
|  |       indi_log.delayedOutput = float(self.delayed_output)
 | ||
|  |       indi_log.delta = float(delta_u)
 | ||
|  |       indi_log.output = float(self.output_steer)
 | ||
|  | 
 | ||
|  |       check_saturation = (v_ego > 10.) and not rate_limited and not steer_override
 | ||
|  |       indi_log.saturated = self._check_saturation(self.output_steer, check_saturation, steers_max)
 | ||
|  | 
 | ||
|  |     return float(self.output_steer), float(self.angle_steers_des), indi_log
 |