openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

498 lines
20 KiB

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HOMOGENEOUS_H
#define EIGEN_HOMOGENEOUS_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Homogeneous
*
* \brief Expression of one (or a set of) homogeneous vector(s)
*
* \param MatrixType the type of the object in which we are making homogeneous
*
* This class represents an expression of one (or a set of) homogeneous vector(s).
* It is the return type of MatrixBase::homogeneous() and most of the time
* this is the only way it is used.
*
* \sa MatrixBase::homogeneous()
*/
namespace internal {
template<typename MatrixType,int Direction>
struct traits<Homogeneous<MatrixType,Direction> >
: traits<MatrixType>
{
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime,
ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
: TmpFlags
};
};
template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
} // end namespace internal
template<typename MatrixType,int _Direction> class Homogeneous
: public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator
{
public:
typedef MatrixType NestedExpression;
enum { Direction = _Direction };
typedef MatrixBase<Homogeneous> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix)
: m_matrix(matrix)
{}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; }
template<typename Rhs>
EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs>
operator* (const MatrixBase<Rhs>& rhs) const
{
eigen_assert(int(Direction)==Horizontal);
return Product<Homogeneous,Rhs>(*this,rhs.derived());
}
template<typename Lhs> friend
EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous>
operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
}
template<typename Scalar, int Dim, int Mode, int Options> friend
EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous >
operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs);
}
template<typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type
redux(const Func& func) const
{
return func(m_matrix.redux(func), Scalar(1));
}
protected:
typename MatrixType::Nested m_matrix;
};
/** \geometry_module \ingroup Geometry_Module
*
* \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient.
*
* This can be used to convert affine coordinates to homogeneous coordinates.
*
* \only_for_vectors
*
* Example: \include MatrixBase_homogeneous.cpp
* Output: \verbinclude MatrixBase_homogeneous.out
*
* \sa VectorwiseOp::homogeneous(), class Homogeneous
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType
MatrixBase<Derived>::homogeneous() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return HomogeneousReturnType(derived());
}
/** \geometry_module \ingroup Geometry_Module
*
* \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix.
*
* This can be used to convert affine coordinates to homogeneous coordinates.
*
* Example: \include VectorwiseOp_homogeneous.cpp
* Output: \verbinclude VectorwiseOp_homogeneous.out
*
* \sa MatrixBase::homogeneous(), class Homogeneous */
template<typename ExpressionType, int Direction>
EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction>
VectorwiseOp<ExpressionType,Direction>::homogeneous() const
{
return HomogeneousReturnType(_expression());
}
/** \geometry_module \ingroup Geometry_Module
*
* \brief homogeneous normalization
*
* \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient.
*
* This can be used to convert homogeneous coordinates to affine coordinates.
*
* It is essentially a shortcut for:
* \code
this->head(this->size()-1)/this->coeff(this->size()-1);
\endcode
*
* Example: \include MatrixBase_hnormalized.cpp
* Output: \verbinclude MatrixBase_hnormalized.out
*
* \sa VectorwiseOp::hnormalized() */
template<typename Derived>
EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType
MatrixBase<Derived>::hnormalized() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return ConstStartMinusOne(derived(),0,0,
ColsAtCompileTime==1?size()-1:1,
ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
}
/** \geometry_module \ingroup Geometry_Module
*
* \brief column or row-wise homogeneous normalization
*
* \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row).
*
* This can be used to convert homogeneous coordinates to affine coordinates.
*
* It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this.
*
* Example: \include DirectionWise_hnormalized.cpp
* Output: \verbinclude DirectionWise_hnormalized.out
*
* \sa MatrixBase::hnormalized() */
template<typename ExpressionType, int Direction>
EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
VectorwiseOp<ExpressionType,Direction>::hnormalized() const
{
return HNormalized_Block(_expression(),0,0,
Direction==Vertical ? _expression().rows()-1 : _expression().rows(),
Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
Replicate<HNormalized_Factors,
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
(HNormalized_Factors(_expression(),
Direction==Vertical ? _expression().rows()-1:0,
Direction==Horizontal ? _expression().cols()-1:0,
Direction==Vertical ? 1 : _expression().rows(),
Direction==Horizontal ? 1 : _expression().cols()),
Direction==Vertical ? _expression().rows()-1 : 1,
Direction==Horizontal ? _expression().cols()-1 : 1));
}
namespace internal {
template<typename MatrixOrTransformType>
struct take_matrix_for_product
{
typedef MatrixOrTransformType type;
EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; }
};
template<typename Scalar, int Dim, int Mode,int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
{
typedef Transform<Scalar, Dim, Mode, Options> TransformType;
typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); }
};
template<typename Scalar, int Dim, int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
{
typedef Transform<Scalar, Dim, Projective, Options> TransformType;
typedef typename TransformType::MatrixType type;
EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); }
};
template<typename MatrixType,typename Lhs>
struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
{
typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
typedef typename make_proper_matrix_type<
typename traits<MatrixTypeCleaned>::Scalar,
LhsMatrixTypeCleaned::RowsAtCompileTime,
MatrixTypeCleaned::ColsAtCompileTime,
MatrixTypeCleaned::PlainObject::Options,
LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Lhs>
struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
: public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
{
typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
: m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
m_rhs(rhs)
{}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = Block<const LhsMatrixTypeNested,
LhsMatrixTypeNested::RowsAtCompileTime,
LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
(m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
dst += m_lhs.col(m_lhs.cols()-1).rowwise()
.template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
}
typename LhsMatrixTypeCleaned::Nested m_lhs;
typename MatrixType::Nested m_rhs;
};
template<typename MatrixType,typename Rhs>
struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar,
MatrixType::RowsAtCompileTime,
Rhs::ColsAtCompileTime,
MatrixType::PlainObject::Options,
MatrixType::MaxRowsAtCompileTime,
Rhs::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Rhs>
struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
: public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = m_lhs * Block<const RhsNested,
RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
RhsNested::ColsAtCompileTime>
(m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
dst += m_rhs.row(m_rhs.rows()-1).colwise()
.template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
}
typename MatrixType::Nested m_lhs;
typename Rhs::Nested m_rhs;
};
template<typename ArgType,int Direction>
struct evaluator_traits<Homogeneous<ArgType,Direction> >
{
typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
typedef HomogeneousShape Shape;
};
template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };
template<typename ArgType,int Direction>
struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
: evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >
{
typedef Homogeneous<ArgType,Direction> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
: Base(), m_temp(op)
{
::new (static_cast<Base*>(this)) Base(m_temp);
}
protected:
PlainObject m_temp;
};
// dense = homogeneous
template< typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
{
typedef Homogeneous<ArgType,Vertical> SrcXprType;
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
dst.row(dst.rows()-1).setOnes();
}
};
// dense = homogeneous
template< typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
{
typedef Homogeneous<ArgType,Horizontal> SrcXprType;
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
dst.col(dst.cols()-1).setOnes();
}
};
template<typename LhsArg, typename Rhs, int ProductTag>
struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag>
{
template<typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
{
homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
}
};
template<typename Lhs,typename Rhs>
struct homogeneous_right_product_refactoring_helper
{
enum {
Dim = Lhs::ColsAtCompileTime,
Rows = Lhs::RowsAtCompileTime
};
typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst;
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
typedef typename Rhs::ConstRowXpr ConstantColumn;
typedef Replicate<const ConstantColumn,Rows,1> ConstantBlock;
typedef Product<Lhs,LinearBlock,LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
};
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape>
: public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr>
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) )
+ ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) )
{}
};
template<typename Lhs, typename RhsArg, int ProductTag>
struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
{
template<typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
}
};
// TODO: the following specialization is to address a regression from 3.2 to 3.3
// In the future, this path should be optimized.
template<typename Lhs, typename RhsArg, int ProductTag>
struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
dst.noalias() = lhs * rhs.eval();
}
};
template<typename Lhs,typename Rhs>
struct homogeneous_left_product_refactoring_helper
{
enum {
Dim = Rhs::RowsAtCompileTime,
Cols = Rhs::ColsAtCompileTime
};
typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst;
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
typedef typename Lhs::ConstColXpr ConstantColumn;
typedef Replicate<const ConstantColumn,1,Cols> ConstantBlock;
typedef Product<LinearBlock,Rhs,LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
};
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape>
: public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr>
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() )
+ ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) )
{}
};
template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
{
typedef Transform<Scalar,Dim,Mode,Options> TransformType;
template<typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst);
}
};
template<typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape>
: public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
{};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_HOMOGENEOUS_H