You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1275 lines
51 KiB
1275 lines
51 KiB
7 years ago
|
// Copyright (c) 2013-2016 Sandstorm Development Group, Inc. and contributors
|
||
|
// Licensed under the MIT License:
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to deal
|
||
|
// in the Software without restriction, including without limitation the rights
|
||
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
// copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
// THE SOFTWARE.
|
||
|
|
||
|
// This file is NOT intended for use by clients, except in generated code.
|
||
|
//
|
||
|
// This file defines low-level, non-type-safe classes for traversing the Cap'n Proto memory layout
|
||
|
// (which is also its wire format). Code generated by the Cap'n Proto compiler uses these classes,
|
||
|
// as does other parts of the Cap'n proto library which provide a higher-level interface for
|
||
|
// dynamic introspection.
|
||
|
|
||
|
#ifndef CAPNP_LAYOUT_H_
|
||
|
#define CAPNP_LAYOUT_H_
|
||
|
|
||
|
#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
|
||
|
#pragma GCC system_header
|
||
|
#endif
|
||
|
|
||
|
#include <kj/common.h>
|
||
|
#include <kj/memory.h>
|
||
|
#include "common.h"
|
||
|
#include "blob.h"
|
||
|
#include "endian.h"
|
||
|
|
||
|
#if (defined(__mips__) || defined(__hppa__)) && !defined(CAPNP_CANONICALIZE_NAN)
|
||
|
#define CAPNP_CANONICALIZE_NAN 1
|
||
|
// Explicitly detect NaNs and canonicalize them to the quiet NaN value as would be returned by
|
||
|
// __builtin_nan("") on systems implementing the IEEE-754 recommended (but not required) NaN
|
||
|
// signalling/quiet differentiation (such as x86). Unfortunately, some architectures -- in
|
||
|
// particular, MIPS -- represent quiet vs. signalling nans differently than the rest of the world.
|
||
|
// Canonicalizing them makes output consistent (which is important!), but hurts performance
|
||
|
// slightly.
|
||
|
//
|
||
|
// Note that trying to convert MIPS NaNs to standard NaNs without losing data doesn't work.
|
||
|
// Signaling vs. quiet is indicated by a bit, with the meaning being the opposite on MIPS vs.
|
||
|
// everyone else. It would be great if we could just flip that bit, but we can't, because if the
|
||
|
// significand is all-zero, then the value is infinity rather than NaN. This means that on most
|
||
|
// machines, where the bit indicates quietness, there is one more quiet NaN value than signalling
|
||
|
// NaN value, whereas on MIPS there is one more sNaN than qNaN, and thus there is no isomorphic
|
||
|
// mapping that properly preserves quietness. Instead of doing something hacky, we just give up
|
||
|
// and blow away NaN payloads, because no one uses them anyway.
|
||
|
#endif
|
||
|
|
||
|
namespace capnp {
|
||
|
|
||
|
#if !CAPNP_LITE
|
||
|
class ClientHook;
|
||
|
#endif // !CAPNP_LITE
|
||
|
|
||
|
namespace _ { // private
|
||
|
|
||
|
class PointerBuilder;
|
||
|
class PointerReader;
|
||
|
class StructBuilder;
|
||
|
class StructReader;
|
||
|
class ListBuilder;
|
||
|
class ListReader;
|
||
|
class OrphanBuilder;
|
||
|
struct WirePointer;
|
||
|
struct WireHelpers;
|
||
|
class SegmentReader;
|
||
|
class SegmentBuilder;
|
||
|
class Arena;
|
||
|
class BuilderArena;
|
||
|
|
||
|
// =============================================================================
|
||
|
|
||
|
#if CAPNP_DEBUG_TYPES
|
||
|
typedef kj::UnitRatio<kj::Bounded<64, uint>, BitLabel, ElementLabel> BitsPerElementTableType;
|
||
|
#else
|
||
|
typedef uint BitsPerElementTableType;
|
||
|
#endif
|
||
|
|
||
|
static constexpr BitsPerElementTableType BITS_PER_ELEMENT_TABLE[8] = {
|
||
|
bounded< 0>() * BITS / ELEMENTS,
|
||
|
bounded< 1>() * BITS / ELEMENTS,
|
||
|
bounded< 8>() * BITS / ELEMENTS,
|
||
|
bounded<16>() * BITS / ELEMENTS,
|
||
|
bounded<32>() * BITS / ELEMENTS,
|
||
|
bounded<64>() * BITS / ELEMENTS,
|
||
|
bounded< 0>() * BITS / ELEMENTS,
|
||
|
bounded< 0>() * BITS / ELEMENTS
|
||
|
};
|
||
|
|
||
|
inline KJ_CONSTEXPR() BitsPerElementTableType dataBitsPerElement(ElementSize size) {
|
||
|
return _::BITS_PER_ELEMENT_TABLE[static_cast<int>(size)];
|
||
|
}
|
||
|
|
||
|
inline constexpr PointersPerElementN<1> pointersPerElement(ElementSize size) {
|
||
|
return size == ElementSize::POINTER
|
||
|
? PointersPerElementN<1>(ONE * POINTERS / ELEMENTS)
|
||
|
: PointersPerElementN<1>(ZERO * POINTERS / ELEMENTS);
|
||
|
}
|
||
|
|
||
|
static constexpr BitsPerElementTableType BITS_PER_ELEMENT_INCLUDING_PONITERS_TABLE[8] = {
|
||
|
bounded< 0>() * BITS / ELEMENTS,
|
||
|
bounded< 1>() * BITS / ELEMENTS,
|
||
|
bounded< 8>() * BITS / ELEMENTS,
|
||
|
bounded<16>() * BITS / ELEMENTS,
|
||
|
bounded<32>() * BITS / ELEMENTS,
|
||
|
bounded<64>() * BITS / ELEMENTS,
|
||
|
bounded<64>() * BITS / ELEMENTS,
|
||
|
bounded< 0>() * BITS / ELEMENTS
|
||
|
};
|
||
|
|
||
|
inline KJ_CONSTEXPR() BitsPerElementTableType bitsPerElementIncludingPointers(ElementSize size) {
|
||
|
return _::BITS_PER_ELEMENT_INCLUDING_PONITERS_TABLE[static_cast<int>(size)];
|
||
|
}
|
||
|
|
||
|
template <size_t size> struct ElementSizeForByteSize;
|
||
|
template <> struct ElementSizeForByteSize<1> { static constexpr ElementSize value = ElementSize::BYTE; };
|
||
|
template <> struct ElementSizeForByteSize<2> { static constexpr ElementSize value = ElementSize::TWO_BYTES; };
|
||
|
template <> struct ElementSizeForByteSize<4> { static constexpr ElementSize value = ElementSize::FOUR_BYTES; };
|
||
|
template <> struct ElementSizeForByteSize<8> { static constexpr ElementSize value = ElementSize::EIGHT_BYTES; };
|
||
|
|
||
|
template <typename T> struct ElementSizeForType {
|
||
|
static constexpr ElementSize value =
|
||
|
// Primitive types that aren't special-cased below can be determined from sizeof().
|
||
|
CAPNP_KIND(T) == Kind::PRIMITIVE ? ElementSizeForByteSize<sizeof(T)>::value :
|
||
|
CAPNP_KIND(T) == Kind::ENUM ? ElementSize::TWO_BYTES :
|
||
|
CAPNP_KIND(T) == Kind::STRUCT ? ElementSize::INLINE_COMPOSITE :
|
||
|
|
||
|
// Everything else is a pointer.
|
||
|
ElementSize::POINTER;
|
||
|
};
|
||
|
|
||
|
// Void and bool are special.
|
||
|
template <> struct ElementSizeForType<Void> { static constexpr ElementSize value = ElementSize::VOID; };
|
||
|
template <> struct ElementSizeForType<bool> { static constexpr ElementSize value = ElementSize::BIT; };
|
||
|
|
||
|
// Lists and blobs are pointers, not structs.
|
||
|
template <typename T, Kind K> struct ElementSizeForType<List<T, K>> {
|
||
|
static constexpr ElementSize value = ElementSize::POINTER;
|
||
|
};
|
||
|
template <> struct ElementSizeForType<Text> {
|
||
|
static constexpr ElementSize value = ElementSize::POINTER;
|
||
|
};
|
||
|
template <> struct ElementSizeForType<Data> {
|
||
|
static constexpr ElementSize value = ElementSize::POINTER;
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
inline constexpr ElementSize elementSizeForType() {
|
||
|
return ElementSizeForType<T>::value;
|
||
|
}
|
||
|
|
||
|
struct MessageSizeCounts {
|
||
|
WordCountN<61, uint64_t> wordCount; // 2^64 bytes
|
||
|
uint capCount;
|
||
|
|
||
|
MessageSizeCounts& operator+=(const MessageSizeCounts& other) {
|
||
|
// OK to truncate unchecked because this class is used to count actual stuff in memory, and
|
||
|
// we couldn't possibly have anywhere near 2^61 words.
|
||
|
wordCount = assumeBits<61>(wordCount + other.wordCount);
|
||
|
capCount += other.capCount;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
void addWords(WordCountN<61, uint64_t> other) {
|
||
|
wordCount = assumeBits<61>(wordCount + other);
|
||
|
}
|
||
|
|
||
|
MessageSize asPublic() {
|
||
|
return MessageSize { unbound(wordCount / WORDS), capCount };
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// =============================================================================
|
||
|
|
||
|
template <int wordCount>
|
||
|
union AlignedData {
|
||
|
// Useful for declaring static constant data blobs as an array of bytes, but forcing those
|
||
|
// bytes to be word-aligned.
|
||
|
|
||
|
uint8_t bytes[wordCount * sizeof(word)];
|
||
|
word words[wordCount];
|
||
|
};
|
||
|
|
||
|
struct StructSize {
|
||
|
StructDataWordCount data;
|
||
|
StructPointerCount pointers;
|
||
|
|
||
|
inline constexpr WordCountN<17> total() const { return data + pointers * WORDS_PER_POINTER; }
|
||
|
|
||
|
StructSize() = default;
|
||
|
inline constexpr StructSize(StructDataWordCount data, StructPointerCount pointers)
|
||
|
: data(data), pointers(pointers) {}
|
||
|
};
|
||
|
|
||
|
template <typename T, typename CapnpPrivate = typename T::_capnpPrivate>
|
||
|
inline constexpr StructSize structSize() {
|
||
|
return StructSize(bounded(CapnpPrivate::dataWordSize) * WORDS,
|
||
|
bounded(CapnpPrivate::pointerCount) * POINTERS);
|
||
|
}
|
||
|
|
||
|
template <typename T, typename CapnpPrivate = typename T::_capnpPrivate,
|
||
|
typename = kj::EnableIf<CAPNP_KIND(T) == Kind::STRUCT>>
|
||
|
inline constexpr StructSize minStructSizeForElement() {
|
||
|
// If T is a struct, return its struct size. Otherwise return the minimum struct size big enough
|
||
|
// to hold a T.
|
||
|
|
||
|
return StructSize(bounded(CapnpPrivate::dataWordSize) * WORDS,
|
||
|
bounded(CapnpPrivate::pointerCount) * POINTERS);
|
||
|
}
|
||
|
|
||
|
template <typename T, typename = kj::EnableIf<CAPNP_KIND(T) != Kind::STRUCT>>
|
||
|
inline constexpr StructSize minStructSizeForElement() {
|
||
|
// If T is a struct, return its struct size. Otherwise return the minimum struct size big enough
|
||
|
// to hold a T.
|
||
|
|
||
|
return StructSize(
|
||
|
dataBitsPerElement(elementSizeForType<T>()) * ELEMENTS > ZERO * BITS
|
||
|
? StructDataWordCount(ONE * WORDS) : StructDataWordCount(ZERO * WORDS),
|
||
|
pointersPerElement(elementSizeForType<T>()) * ELEMENTS);
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
// Masking of default values
|
||
|
|
||
|
template <typename T, Kind kind = CAPNP_KIND(T)> struct Mask_;
|
||
|
template <typename T> struct Mask_<T, Kind::PRIMITIVE> { typedef T Type; };
|
||
|
template <typename T> struct Mask_<T, Kind::ENUM> { typedef uint16_t Type; };
|
||
|
template <> struct Mask_<float, Kind::PRIMITIVE> { typedef uint32_t Type; };
|
||
|
template <> struct Mask_<double, Kind::PRIMITIVE> { typedef uint64_t Type; };
|
||
|
|
||
|
template <typename T> struct Mask_<T, Kind::OTHER> {
|
||
|
// Union discriminants end up here.
|
||
|
static_assert(sizeof(T) == 2, "Don't know how to mask this type.");
|
||
|
typedef uint16_t Type;
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
using Mask = typename Mask_<T>::Type;
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(Mask<T> mask(T value, Mask<T> mask));
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(T unmask(Mask<T> value, Mask<T> mask));
|
||
|
|
||
|
template <typename T>
|
||
|
inline Mask<T> mask(T value, Mask<T> mask) {
|
||
|
return static_cast<Mask<T> >(value) ^ mask;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline uint32_t mask<float>(float value, uint32_t mask) {
|
||
|
#if CAPNP_CANONICALIZE_NAN
|
||
|
if (value != value) {
|
||
|
return 0x7fc00000u ^ mask;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
uint32_t i;
|
||
|
static_assert(sizeof(i) == sizeof(value), "float is not 32 bits?");
|
||
|
memcpy(&i, &value, sizeof(value));
|
||
|
return i ^ mask;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline uint64_t mask<double>(double value, uint64_t mask) {
|
||
|
#if CAPNP_CANONICALIZE_NAN
|
||
|
if (value != value) {
|
||
|
return 0x7ff8000000000000ull ^ mask;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
uint64_t i;
|
||
|
static_assert(sizeof(i) == sizeof(value), "double is not 64 bits?");
|
||
|
memcpy(&i, &value, sizeof(value));
|
||
|
return i ^ mask;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline T unmask(Mask<T> value, Mask<T> mask) {
|
||
|
return static_cast<T>(value ^ mask);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline float unmask<float>(uint32_t value, uint32_t mask) {
|
||
|
value ^= mask;
|
||
|
float result;
|
||
|
static_assert(sizeof(result) == sizeof(value), "float is not 32 bits?");
|
||
|
memcpy(&result, &value, sizeof(value));
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline double unmask<double>(uint64_t value, uint64_t mask) {
|
||
|
value ^= mask;
|
||
|
double result;
|
||
|
static_assert(sizeof(result) == sizeof(value), "double is not 64 bits?");
|
||
|
memcpy(&result, &value, sizeof(value));
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
class CapTableReader {
|
||
|
public:
|
||
|
#if !CAPNP_LITE
|
||
|
virtual kj::Maybe<kj::Own<ClientHook>> extractCap(uint index) = 0;
|
||
|
// Extract the capability at the given index. If the index is invalid, returns null.
|
||
|
#endif // !CAPNP_LITE
|
||
|
};
|
||
|
|
||
|
class CapTableBuilder: public CapTableReader {
|
||
|
public:
|
||
|
#if !CAPNP_LITE
|
||
|
virtual uint injectCap(kj::Own<ClientHook>&& cap) = 0;
|
||
|
// Add the capability to the message and return its index. If the same ClientHook is injected
|
||
|
// twice, this may return the same index both times, but in this case dropCap() needs to be
|
||
|
// called an equal number of times to actually remove the cap.
|
||
|
|
||
|
virtual void dropCap(uint index) = 0;
|
||
|
// Remove a capability injected earlier. Called when the pointer is overwritten or zero'd out.
|
||
|
#endif // !CAPNP_LITE
|
||
|
};
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
class PointerBuilder: public kj::DisallowConstCopy {
|
||
|
// Represents a single pointer, usually embedded in a struct or a list.
|
||
|
|
||
|
public:
|
||
|
inline PointerBuilder(): segment(nullptr), capTable(nullptr), pointer(nullptr) {}
|
||
|
|
||
|
static inline PointerBuilder getRoot(
|
||
|
SegmentBuilder* segment, CapTableBuilder* capTable, word* location);
|
||
|
// Get a PointerBuilder representing a message root located in the given segment at the given
|
||
|
// location.
|
||
|
|
||
|
inline bool isNull() { return getPointerType() == PointerType::NULL_; }
|
||
|
PointerType getPointerType() const;
|
||
|
|
||
|
StructBuilder getStruct(StructSize size, const word* defaultValue);
|
||
|
ListBuilder getList(ElementSize elementSize, const word* defaultValue);
|
||
|
ListBuilder getStructList(StructSize elementSize, const word* defaultValue);
|
||
|
ListBuilder getListAnySize(const word* defaultValue);
|
||
|
template <typename T> typename T::Builder getBlob(
|
||
|
const void* defaultValue, ByteCount defaultSize);
|
||
|
#if !CAPNP_LITE
|
||
|
kj::Own<ClientHook> getCapability();
|
||
|
#endif // !CAPNP_LITE
|
||
|
// Get methods: Get the value. If it is null, initialize it to a copy of the default value.
|
||
|
// The default value is encoded as an "unchecked message" for structs, lists, and objects, or a
|
||
|
// simple byte array for blobs.
|
||
|
|
||
|
StructBuilder initStruct(StructSize size);
|
||
|
ListBuilder initList(ElementSize elementSize, ElementCount elementCount);
|
||
|
ListBuilder initStructList(ElementCount elementCount, StructSize size);
|
||
|
template <typename T> typename T::Builder initBlob(ByteCount size);
|
||
|
// Init methods: Initialize the pointer to a newly-allocated object, discarding the existing
|
||
|
// object.
|
||
|
|
||
|
void setStruct(const StructReader& value, bool canonical = false);
|
||
|
void setList(const ListReader& value, bool canonical = false);
|
||
|
template <typename T> void setBlob(typename T::Reader value);
|
||
|
#if !CAPNP_LITE
|
||
|
void setCapability(kj::Own<ClientHook>&& cap);
|
||
|
#endif // !CAPNP_LITE
|
||
|
// Set methods: Initialize the pointer to a newly-allocated copy of the given value, discarding
|
||
|
// the existing object.
|
||
|
|
||
|
void adopt(OrphanBuilder&& orphan);
|
||
|
// Set the pointer to point at the given orphaned value.
|
||
|
|
||
|
OrphanBuilder disown();
|
||
|
// Set the pointer to null and return its previous value as an orphan.
|
||
|
|
||
|
void clear();
|
||
|
// Clear the pointer to null, discarding its previous value.
|
||
|
|
||
|
void transferFrom(PointerBuilder other);
|
||
|
// Equivalent to `adopt(other.disown())`.
|
||
|
|
||
|
void copyFrom(PointerReader other, bool canonical = false);
|
||
|
// Equivalent to `set(other.get())`.
|
||
|
// If you set the canonical flag, it will attempt to lay the target out
|
||
|
// canonically, provided enough space is available.
|
||
|
|
||
|
PointerReader asReader() const;
|
||
|
|
||
|
BuilderArena* getArena() const;
|
||
|
// Get the arena containing this pointer.
|
||
|
|
||
|
CapTableBuilder* getCapTable();
|
||
|
// Gets the capability context in which this object is operating.
|
||
|
|
||
|
PointerBuilder imbue(CapTableBuilder* capTable);
|
||
|
// Return a copy of this builder except using the given capability context.
|
||
|
|
||
|
private:
|
||
|
SegmentBuilder* segment; // Memory segment in which the pointer resides.
|
||
|
CapTableBuilder* capTable; // Table of capability indexes.
|
||
|
WirePointer* pointer; // Pointer to the pointer.
|
||
|
|
||
|
inline PointerBuilder(SegmentBuilder* segment, CapTableBuilder* capTable, WirePointer* pointer)
|
||
|
: segment(segment), capTable(capTable), pointer(pointer) {}
|
||
|
|
||
|
friend class StructBuilder;
|
||
|
friend class ListBuilder;
|
||
|
friend class OrphanBuilder;
|
||
|
};
|
||
|
|
||
|
class PointerReader {
|
||
|
public:
|
||
|
inline PointerReader()
|
||
|
: segment(nullptr), capTable(nullptr), pointer(nullptr), nestingLimit(0x7fffffff) {}
|
||
|
|
||
|
static PointerReader getRoot(SegmentReader* segment, CapTableReader* capTable,
|
||
|
const word* location, int nestingLimit);
|
||
|
// Get a PointerReader representing a message root located in the given segment at the given
|
||
|
// location.
|
||
|
|
||
|
static inline PointerReader getRootUnchecked(const word* location);
|
||
|
// Get a PointerReader for an unchecked message.
|
||
|
|
||
|
MessageSizeCounts targetSize() const;
|
||
|
// Return the total size of the target object and everything to which it points. Does not count
|
||
|
// far pointer overhead. This is useful for deciding how much space is needed to copy the object
|
||
|
// into a flat array. However, the caller is advised NOT to treat this value as secure. Instead,
|
||
|
// use the result as a hint for allocating the first segment, do the copy, and then throw an
|
||
|
// exception if it overruns.
|
||
|
|
||
|
inline bool isNull() const { return getPointerType() == PointerType::NULL_; }
|
||
|
PointerType getPointerType() const;
|
||
|
|
||
|
StructReader getStruct(const word* defaultValue) const;
|
||
|
ListReader getList(ElementSize expectedElementSize, const word* defaultValue) const;
|
||
|
ListReader getListAnySize(const word* defaultValue) const;
|
||
|
template <typename T>
|
||
|
typename T::Reader getBlob(const void* defaultValue, ByteCount defaultSize) const;
|
||
|
#if !CAPNP_LITE
|
||
|
kj::Own<ClientHook> getCapability() const;
|
||
|
#endif // !CAPNP_LITE
|
||
|
// Get methods: Get the value. If it is null, return the default value instead.
|
||
|
// The default value is encoded as an "unchecked message" for structs, lists, and objects, or a
|
||
|
// simple byte array for blobs.
|
||
|
|
||
|
const word* getUnchecked() const;
|
||
|
// If this is an unchecked message, get a word* pointing at the location of the pointer. This
|
||
|
// word* can actually be passed to readUnchecked() to read the designated sub-object later. If
|
||
|
// this isn't an unchecked message, throws an exception.
|
||
|
|
||
|
kj::Maybe<Arena&> getArena() const;
|
||
|
// Get the arena containing this pointer.
|
||
|
|
||
|
CapTableReader* getCapTable();
|
||
|
// Gets the capability context in which this object is operating.
|
||
|
|
||
|
PointerReader imbue(CapTableReader* capTable) const;
|
||
|
// Return a copy of this reader except using the given capability context.
|
||
|
|
||
|
bool isCanonical(const word **readHead);
|
||
|
// Validate this pointer's canonicity, subject to the conditions:
|
||
|
// * All data to the left of readHead has been read thus far (for pointer
|
||
|
// ordering)
|
||
|
// * All pointers in preorder have already been checked
|
||
|
// * This pointer is in the first and only segment of the message
|
||
|
|
||
|
private:
|
||
|
SegmentReader* segment; // Memory segment in which the pointer resides.
|
||
|
CapTableReader* capTable; // Table of capability indexes.
|
||
|
const WirePointer* pointer; // Pointer to the pointer. null = treat as null pointer.
|
||
|
|
||
|
int nestingLimit;
|
||
|
// Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
|
||
|
// Once this reaches zero, further pointers will be pruned.
|
||
|
|
||
|
inline PointerReader(SegmentReader* segment, CapTableReader* capTable,
|
||
|
const WirePointer* pointer, int nestingLimit)
|
||
|
: segment(segment), capTable(capTable), pointer(pointer), nestingLimit(nestingLimit) {}
|
||
|
|
||
|
friend class StructReader;
|
||
|
friend class ListReader;
|
||
|
friend class PointerBuilder;
|
||
|
friend class OrphanBuilder;
|
||
|
};
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
class StructBuilder: public kj::DisallowConstCopy {
|
||
|
public:
|
||
|
inline StructBuilder(): segment(nullptr), capTable(nullptr), data(nullptr), pointers(nullptr) {}
|
||
|
|
||
|
inline word* getLocation() { return reinterpret_cast<word*>(data); }
|
||
|
// Get the object's location. Only valid for independently-allocated objects (i.e. not list
|
||
|
// elements).
|
||
|
|
||
|
inline StructDataBitCount getDataSectionSize() const { return dataSize; }
|
||
|
inline StructPointerCount getPointerSectionSize() const { return pointerCount; }
|
||
|
inline kj::ArrayPtr<byte> getDataSectionAsBlob();
|
||
|
inline _::ListBuilder getPointerSectionAsList();
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(bool hasDataField(StructDataOffset offset));
|
||
|
// Return true if the field is set to something other than its default value.
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(T getDataField(StructDataOffset offset));
|
||
|
// Gets the data field value of the given type at the given offset. The offset is measured in
|
||
|
// multiples of the field size, determined by the type.
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(T getDataField(StructDataOffset offset, Mask<T> mask));
|
||
|
// Like getDataField() but applies the given XOR mask to the data on load. Used for reading
|
||
|
// fields with non-zero default values.
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(void setDataField(StructDataOffset offset, kj::NoInfer<T> value));
|
||
|
// Sets the data field value at the given offset.
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(void setDataField(StructDataOffset offset,
|
||
|
kj::NoInfer<T> value, Mask<T> mask));
|
||
|
// Like setDataField() but applies the given XOR mask before storing. Used for writing fields
|
||
|
// with non-zero default values.
|
||
|
|
||
|
KJ_ALWAYS_INLINE(PointerBuilder getPointerField(StructPointerOffset ptrIndex));
|
||
|
// Get a builder for a pointer field given the index within the pointer section.
|
||
|
|
||
|
void clearAll();
|
||
|
// Clear all pointers and data.
|
||
|
|
||
|
void transferContentFrom(StructBuilder other);
|
||
|
// Adopt all pointers from `other`, and also copy all data. If `other`'s sections are larger
|
||
|
// than this, the extra data is not transferred, meaning there is a risk of data loss when
|
||
|
// transferring from messages built with future versions of the protocol.
|
||
|
|
||
|
void copyContentFrom(StructReader other);
|
||
|
// Copy content from `other`. If `other`'s sections are larger than this, the extra data is not
|
||
|
// copied, meaning there is a risk of data loss when copying from messages built with future
|
||
|
// versions of the protocol.
|
||
|
|
||
|
StructReader asReader() const;
|
||
|
// Gets a StructReader pointing at the same memory.
|
||
|
|
||
|
BuilderArena* getArena();
|
||
|
// Gets the arena in which this object is allocated.
|
||
|
|
||
|
CapTableBuilder* getCapTable();
|
||
|
// Gets the capability context in which this object is operating.
|
||
|
|
||
|
StructBuilder imbue(CapTableBuilder* capTable);
|
||
|
// Return a copy of this builder except using the given capability context.
|
||
|
|
||
|
private:
|
||
|
SegmentBuilder* segment; // Memory segment in which the struct resides.
|
||
|
CapTableBuilder* capTable; // Table of capability indexes.
|
||
|
void* data; // Pointer to the encoded data.
|
||
|
WirePointer* pointers; // Pointer to the encoded pointers.
|
||
|
|
||
|
StructDataBitCount dataSize;
|
||
|
// Size of data section. We use a bit count rather than a word count to more easily handle the
|
||
|
// case of struct lists encoded with less than a word per element.
|
||
|
|
||
|
StructPointerCount pointerCount; // Size of the pointer section.
|
||
|
|
||
|
inline StructBuilder(SegmentBuilder* segment, CapTableBuilder* capTable,
|
||
|
void* data, WirePointer* pointers,
|
||
|
StructDataBitCount dataSize, StructPointerCount pointerCount)
|
||
|
: segment(segment), capTable(capTable), data(data), pointers(pointers),
|
||
|
dataSize(dataSize), pointerCount(pointerCount) {}
|
||
|
|
||
|
friend class ListBuilder;
|
||
|
friend struct WireHelpers;
|
||
|
friend class OrphanBuilder;
|
||
|
};
|
||
|
|
||
|
class StructReader {
|
||
|
public:
|
||
|
inline StructReader()
|
||
|
: segment(nullptr), capTable(nullptr), data(nullptr), pointers(nullptr),
|
||
|
dataSize(ZERO * BITS), pointerCount(ZERO * POINTERS), nestingLimit(0x7fffffff) {}
|
||
|
inline StructReader(kj::ArrayPtr<const word> data)
|
||
|
: segment(nullptr), capTable(nullptr), data(data.begin()), pointers(nullptr),
|
||
|
dataSize(assumeBits<STRUCT_DATA_WORD_COUNT_BITS>(data.size()) * WORDS * BITS_PER_WORD),
|
||
|
pointerCount(ZERO * POINTERS), nestingLimit(0x7fffffff) {}
|
||
|
|
||
|
const void* getLocation() const { return data; }
|
||
|
|
||
|
inline StructDataBitCount getDataSectionSize() const { return dataSize; }
|
||
|
inline StructPointerCount getPointerSectionSize() const { return pointerCount; }
|
||
|
inline kj::ArrayPtr<const byte> getDataSectionAsBlob();
|
||
|
inline _::ListReader getPointerSectionAsList();
|
||
|
|
||
|
kj::Array<word> canonicalize();
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(bool hasDataField(StructDataOffset offset) const);
|
||
|
// Return true if the field is set to something other than its default value.
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(T getDataField(StructDataOffset offset) const);
|
||
|
// Get the data field value of the given type at the given offset. The offset is measured in
|
||
|
// multiples of the field size, determined by the type. Returns zero if the offset is past the
|
||
|
// end of the struct's data section.
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(T getDataField(StructDataOffset offset, Mask<T> mask) const);
|
||
|
// Like getDataField(offset), but applies the given XOR mask to the result. Used for reading
|
||
|
// fields with non-zero default values.
|
||
|
|
||
|
KJ_ALWAYS_INLINE(PointerReader getPointerField(StructPointerOffset ptrIndex) const);
|
||
|
// Get a reader for a pointer field given the index within the pointer section. If the index
|
||
|
// is out-of-bounds, returns a null pointer.
|
||
|
|
||
|
MessageSizeCounts totalSize() const;
|
||
|
// Return the total size of the struct and everything to which it points. Does not count far
|
||
|
// pointer overhead. This is useful for deciding how much space is needed to copy the struct
|
||
|
// into a flat array. However, the caller is advised NOT to treat this value as secure. Instead,
|
||
|
// use the result as a hint for allocating the first segment, do the copy, and then throw an
|
||
|
// exception if it overruns.
|
||
|
|
||
|
CapTableReader* getCapTable();
|
||
|
// Gets the capability context in which this object is operating.
|
||
|
|
||
|
StructReader imbue(CapTableReader* capTable) const;
|
||
|
// Return a copy of this reader except using the given capability context.
|
||
|
|
||
|
bool isCanonical(const word **readHead, const word **ptrHead,
|
||
|
bool *dataTrunc, bool *ptrTrunc);
|
||
|
// Validate this pointer's canonicity, subject to the conditions:
|
||
|
// * All data to the left of readHead has been read thus far (for pointer
|
||
|
// ordering)
|
||
|
// * All pointers in preorder have already been checked
|
||
|
// * This pointer is in the first and only segment of the message
|
||
|
//
|
||
|
// If this function returns false, the struct is non-canonical. If it
|
||
|
// returns true, then:
|
||
|
// * If it is a composite in a list, it is canonical if at least one struct
|
||
|
// in the list outputs dataTrunc = 1, and at least one outputs ptrTrunc = 1
|
||
|
// * If it is derived from a struct pointer, it is canonical if
|
||
|
// dataTrunc = 1 AND ptrTrunc = 1
|
||
|
|
||
|
private:
|
||
|
SegmentReader* segment; // Memory segment in which the struct resides.
|
||
|
CapTableReader* capTable; // Table of capability indexes.
|
||
|
|
||
|
const void* data;
|
||
|
const WirePointer* pointers;
|
||
|
|
||
|
StructDataBitCount dataSize;
|
||
|
// Size of data section. We use a bit count rather than a word count to more easily handle the
|
||
|
// case of struct lists encoded with less than a word per element.
|
||
|
|
||
|
StructPointerCount pointerCount; // Size of the pointer section.
|
||
|
|
||
|
int nestingLimit;
|
||
|
// Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
|
||
|
// Once this reaches zero, further pointers will be pruned.
|
||
|
// TODO(perf): Limit to 16 bits for better packing?
|
||
|
|
||
|
inline StructReader(SegmentReader* segment, CapTableReader* capTable,
|
||
|
const void* data, const WirePointer* pointers,
|
||
|
StructDataBitCount dataSize, StructPointerCount pointerCount,
|
||
|
int nestingLimit)
|
||
|
: segment(segment), capTable(capTable), data(data), pointers(pointers),
|
||
|
dataSize(dataSize), pointerCount(pointerCount),
|
||
|
nestingLimit(nestingLimit) {}
|
||
|
|
||
|
friend class ListReader;
|
||
|
friend class StructBuilder;
|
||
|
friend struct WireHelpers;
|
||
|
};
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
class ListBuilder: public kj::DisallowConstCopy {
|
||
|
public:
|
||
|
inline explicit ListBuilder(ElementSize elementSize)
|
||
|
: segment(nullptr), capTable(nullptr), ptr(nullptr), elementCount(ZERO * ELEMENTS),
|
||
|
step(ZERO * BITS / ELEMENTS), structDataSize(ZERO * BITS),
|
||
|
structPointerCount(ZERO * POINTERS), elementSize(elementSize) {}
|
||
|
|
||
|
inline word* getLocation() {
|
||
|
// Get the object's location.
|
||
|
|
||
|
if (elementSize == ElementSize::INLINE_COMPOSITE && ptr != nullptr) {
|
||
|
return reinterpret_cast<word*>(ptr) - POINTER_SIZE_IN_WORDS;
|
||
|
} else {
|
||
|
return reinterpret_cast<word*>(ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline ElementSize getElementSize() const { return elementSize; }
|
||
|
|
||
|
inline ListElementCount size() const;
|
||
|
// The number of elements in the list.
|
||
|
|
||
|
Text::Builder asText();
|
||
|
Data::Builder asData();
|
||
|
// Reinterpret the list as a blob. Throws an exception if the elements are not byte-sized.
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(T getDataElement(ElementCount index));
|
||
|
// Get the element of the given type at the given index.
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(void setDataElement(ElementCount index, kj::NoInfer<T> value));
|
||
|
// Set the element at the given index.
|
||
|
|
||
|
KJ_ALWAYS_INLINE(PointerBuilder getPointerElement(ElementCount index));
|
||
|
|
||
|
StructBuilder getStructElement(ElementCount index);
|
||
|
|
||
|
ListReader asReader() const;
|
||
|
// Get a ListReader pointing at the same memory.
|
||
|
|
||
|
BuilderArena* getArena();
|
||
|
// Gets the arena in which this object is allocated.
|
||
|
|
||
|
CapTableBuilder* getCapTable();
|
||
|
// Gets the capability context in which this object is operating.
|
||
|
|
||
|
ListBuilder imbue(CapTableBuilder* capTable);
|
||
|
// Return a copy of this builder except using the given capability context.
|
||
|
|
||
|
private:
|
||
|
SegmentBuilder* segment; // Memory segment in which the list resides.
|
||
|
CapTableBuilder* capTable; // Table of capability indexes.
|
||
|
|
||
|
byte* ptr; // Pointer to list content.
|
||
|
|
||
|
ListElementCount elementCount; // Number of elements in the list.
|
||
|
|
||
|
BitsPerElementN<23> step;
|
||
|
// The distance between elements. The maximum value occurs when a struct contains 2^16-1 data
|
||
|
// words and 2^16-1 pointers, i.e. 2^17 - 2 words, or 2^23 - 128 bits.
|
||
|
|
||
|
StructDataBitCount structDataSize;
|
||
|
StructPointerCount structPointerCount;
|
||
|
// The struct properties to use when interpreting the elements as structs. All lists can be
|
||
|
// interpreted as struct lists, so these are always filled in.
|
||
|
|
||
|
ElementSize elementSize;
|
||
|
// The element size as a ElementSize. This is only really needed to disambiguate INLINE_COMPOSITE
|
||
|
// from other types when the overall size is exactly zero or one words.
|
||
|
|
||
|
inline ListBuilder(SegmentBuilder* segment, CapTableBuilder* capTable, void* ptr,
|
||
|
BitsPerElementN<23> step, ListElementCount size,
|
||
|
StructDataBitCount structDataSize, StructPointerCount structPointerCount,
|
||
|
ElementSize elementSize)
|
||
|
: segment(segment), capTable(capTable), ptr(reinterpret_cast<byte*>(ptr)),
|
||
|
elementCount(size), step(step), structDataSize(structDataSize),
|
||
|
structPointerCount(structPointerCount), elementSize(elementSize) {}
|
||
|
|
||
|
friend class StructBuilder;
|
||
|
friend struct WireHelpers;
|
||
|
friend class OrphanBuilder;
|
||
|
};
|
||
|
|
||
|
class ListReader {
|
||
|
public:
|
||
|
inline explicit ListReader(ElementSize elementSize)
|
||
|
: segment(nullptr), capTable(nullptr), ptr(nullptr), elementCount(ZERO * ELEMENTS),
|
||
|
step(ZERO * BITS / ELEMENTS), structDataSize(ZERO * BITS),
|
||
|
structPointerCount(ZERO * POINTERS), elementSize(elementSize), nestingLimit(0x7fffffff) {}
|
||
|
|
||
|
inline ListElementCount size() const;
|
||
|
// The number of elements in the list.
|
||
|
|
||
|
inline ElementSize getElementSize() const { return elementSize; }
|
||
|
|
||
|
Text::Reader asText();
|
||
|
Data::Reader asData();
|
||
|
// Reinterpret the list as a blob. Throws an exception if the elements are not byte-sized.
|
||
|
|
||
|
kj::ArrayPtr<const byte> asRawBytes();
|
||
|
|
||
|
template <typename T>
|
||
|
KJ_ALWAYS_INLINE(T getDataElement(ElementCount index) const);
|
||
|
// Get the element of the given type at the given index.
|
||
|
|
||
|
KJ_ALWAYS_INLINE(PointerReader getPointerElement(ElementCount index) const);
|
||
|
|
||
|
StructReader getStructElement(ElementCount index) const;
|
||
|
|
||
|
CapTableReader* getCapTable();
|
||
|
// Gets the capability context in which this object is operating.
|
||
|
|
||
|
ListReader imbue(CapTableReader* capTable) const;
|
||
|
// Return a copy of this reader except using the given capability context.
|
||
|
|
||
|
bool isCanonical(const word **readHead, const WirePointer* ref);
|
||
|
// Validate this pointer's canonicity, subject to the conditions:
|
||
|
// * All data to the left of readHead has been read thus far (for pointer
|
||
|
// ordering)
|
||
|
// * All pointers in preorder have already been checked
|
||
|
// * This pointer is in the first and only segment of the message
|
||
|
|
||
|
private:
|
||
|
SegmentReader* segment; // Memory segment in which the list resides.
|
||
|
CapTableReader* capTable; // Table of capability indexes.
|
||
|
|
||
|
const byte* ptr; // Pointer to list content.
|
||
|
|
||
|
ListElementCount elementCount; // Number of elements in the list.
|
||
|
|
||
|
BitsPerElementN<23> step;
|
||
|
// The distance between elements. The maximum value occurs when a struct contains 2^16-1 data
|
||
|
// words and 2^16-1 pointers, i.e. 2^17 - 2 words, or 2^23 - 2 bits.
|
||
|
|
||
|
StructDataBitCount structDataSize;
|
||
|
StructPointerCount structPointerCount;
|
||
|
// The struct properties to use when interpreting the elements as structs. All lists can be
|
||
|
// interpreted as struct lists, so these are always filled in.
|
||
|
|
||
|
ElementSize elementSize;
|
||
|
// The element size as a ElementSize. This is only really needed to disambiguate INLINE_COMPOSITE
|
||
|
// from other types when the overall size is exactly zero or one words.
|
||
|
|
||
|
int nestingLimit;
|
||
|
// Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
|
||
|
// Once this reaches zero, further pointers will be pruned.
|
||
|
|
||
|
inline ListReader(SegmentReader* segment, CapTableReader* capTable, const void* ptr,
|
||
|
ListElementCount elementCount, BitsPerElementN<23> step,
|
||
|
StructDataBitCount structDataSize, StructPointerCount structPointerCount,
|
||
|
ElementSize elementSize, int nestingLimit)
|
||
|
: segment(segment), capTable(capTable), ptr(reinterpret_cast<const byte*>(ptr)),
|
||
|
elementCount(elementCount), step(step), structDataSize(structDataSize),
|
||
|
structPointerCount(structPointerCount), elementSize(elementSize),
|
||
|
nestingLimit(nestingLimit) {}
|
||
|
|
||
|
friend class StructReader;
|
||
|
friend class ListBuilder;
|
||
|
friend struct WireHelpers;
|
||
|
friend class OrphanBuilder;
|
||
|
};
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
class OrphanBuilder {
|
||
|
public:
|
||
|
inline OrphanBuilder(): segment(nullptr), capTable(nullptr), location(nullptr) {
|
||
|
memset(&tag, 0, sizeof(tag));
|
||
|
}
|
||
|
OrphanBuilder(const OrphanBuilder& other) = delete;
|
||
|
inline OrphanBuilder(OrphanBuilder&& other) noexcept;
|
||
|
inline ~OrphanBuilder() noexcept(false);
|
||
|
|
||
|
static OrphanBuilder initStruct(BuilderArena* arena, CapTableBuilder* capTable, StructSize size);
|
||
|
static OrphanBuilder initList(BuilderArena* arena, CapTableBuilder* capTable,
|
||
|
ElementCount elementCount, ElementSize elementSize);
|
||
|
static OrphanBuilder initStructList(BuilderArena* arena, CapTableBuilder* capTable,
|
||
|
ElementCount elementCount, StructSize elementSize);
|
||
|
static OrphanBuilder initText(BuilderArena* arena, CapTableBuilder* capTable, ByteCount size);
|
||
|
static OrphanBuilder initData(BuilderArena* arena, CapTableBuilder* capTable, ByteCount size);
|
||
|
|
||
|
static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, StructReader copyFrom);
|
||
|
static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, ListReader copyFrom);
|
||
|
static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, PointerReader copyFrom);
|
||
|
static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, Text::Reader copyFrom);
|
||
|
static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable, Data::Reader copyFrom);
|
||
|
#if !CAPNP_LITE
|
||
|
static OrphanBuilder copy(BuilderArena* arena, CapTableBuilder* capTable,
|
||
|
kj::Own<ClientHook> copyFrom);
|
||
|
#endif // !CAPNP_LITE
|
||
|
|
||
|
static OrphanBuilder concat(BuilderArena* arena, CapTableBuilder* capTable,
|
||
|
ElementSize expectedElementSize, StructSize expectedStructSize,
|
||
|
kj::ArrayPtr<const ListReader> lists);
|
||
|
|
||
|
static OrphanBuilder referenceExternalData(BuilderArena* arena, Data::Reader data);
|
||
|
|
||
|
OrphanBuilder& operator=(const OrphanBuilder& other) = delete;
|
||
|
inline OrphanBuilder& operator=(OrphanBuilder&& other);
|
||
|
|
||
|
inline bool operator==(decltype(nullptr)) const { return location == nullptr; }
|
||
|
inline bool operator!=(decltype(nullptr)) const { return location != nullptr; }
|
||
|
|
||
|
StructBuilder asStruct(StructSize size);
|
||
|
// Interpret as a struct, or throw an exception if not a struct.
|
||
|
|
||
|
ListBuilder asList(ElementSize elementSize);
|
||
|
// Interpret as a list, or throw an exception if not a list. elementSize cannot be
|
||
|
// INLINE_COMPOSITE -- use asStructList() instead.
|
||
|
|
||
|
ListBuilder asStructList(StructSize elementSize);
|
||
|
// Interpret as a struct list, or throw an exception if not a list.
|
||
|
|
||
|
ListBuilder asListAnySize();
|
||
|
// For AnyList.
|
||
|
|
||
|
Text::Builder asText();
|
||
|
Data::Builder asData();
|
||
|
// Interpret as a blob, or throw an exception if not a blob.
|
||
|
|
||
|
StructReader asStructReader(StructSize size) const;
|
||
|
ListReader asListReader(ElementSize elementSize) const;
|
||
|
ListReader asListReaderAnySize() const;
|
||
|
#if !CAPNP_LITE
|
||
|
kj::Own<ClientHook> asCapability() const;
|
||
|
#endif // !CAPNP_LITE
|
||
|
Text::Reader asTextReader() const;
|
||
|
Data::Reader asDataReader() const;
|
||
|
|
||
|
bool truncate(ElementCount size, bool isText) KJ_WARN_UNUSED_RESULT;
|
||
|
// Resize the orphan list to the given size. Returns false if the list is currently empty but
|
||
|
// the requested size is non-zero, in which case the caller will need to allocate a new list.
|
||
|
|
||
|
void truncate(ElementCount size, ElementSize elementSize);
|
||
|
void truncate(ElementCount size, StructSize elementSize);
|
||
|
void truncateText(ElementCount size);
|
||
|
// Versions of truncate() that know how to allocate a new list if needed.
|
||
|
|
||
|
private:
|
||
|
static_assert(ONE * POINTERS * WORDS_PER_POINTER == ONE * WORDS,
|
||
|
"This struct assumes a pointer is one word.");
|
||
|
word tag;
|
||
|
// Contains an encoded WirePointer representing this object. WirePointer is defined in
|
||
|
// layout.c++, but fits in a word.
|
||
|
//
|
||
|
// This may be a FAR pointer. Even in that case, `location` points to the eventual destination
|
||
|
// of that far pointer. The reason we keep the far pointer around rather than just making `tag`
|
||
|
// represent the final destination is because if the eventual adopter of the pointer is not in
|
||
|
// the target's segment then it may be useful to reuse the far pointer landing pad.
|
||
|
//
|
||
|
// If `tag` is not a far pointer, its offset is garbage; only `location` points to the actual
|
||
|
// target.
|
||
|
|
||
|
SegmentBuilder* segment;
|
||
|
// Segment in which the object resides.
|
||
|
|
||
|
CapTableBuilder* capTable;
|
||
|
// Table of capability indexes.
|
||
|
|
||
|
word* location;
|
||
|
// Pointer to the object, or nullptr if the pointer is null. For capabilities, we make this
|
||
|
// 0x1 just so that it is non-null for operator==, but it is never used.
|
||
|
|
||
|
inline OrphanBuilder(const void* tagPtr, SegmentBuilder* segment,
|
||
|
CapTableBuilder* capTable, word* location)
|
||
|
: segment(segment), capTable(capTable), location(location) {
|
||
|
memcpy(&tag, tagPtr, sizeof(tag));
|
||
|
}
|
||
|
|
||
|
inline WirePointer* tagAsPtr() { return reinterpret_cast<WirePointer*>(&tag); }
|
||
|
inline const WirePointer* tagAsPtr() const { return reinterpret_cast<const WirePointer*>(&tag); }
|
||
|
|
||
|
void euthanize();
|
||
|
// Erase the target object, zeroing it out and possibly reclaiming the memory. Called when
|
||
|
// the OrphanBuilder is being destroyed or overwritten and it is non-null.
|
||
|
|
||
|
friend struct WireHelpers;
|
||
|
};
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Internal implementation details...
|
||
|
|
||
|
// These are defined in the source file.
|
||
|
template <> typename Text::Builder PointerBuilder::initBlob<Text>(ByteCount size);
|
||
|
template <> void PointerBuilder::setBlob<Text>(typename Text::Reader value);
|
||
|
template <> typename Text::Builder PointerBuilder::getBlob<Text>(
|
||
|
const void* defaultValue, ByteCount defaultSize);
|
||
|
template <> typename Text::Reader PointerReader::getBlob<Text>(
|
||
|
const void* defaultValue, ByteCount defaultSize) const;
|
||
|
|
||
|
template <> typename Data::Builder PointerBuilder::initBlob<Data>(ByteCount size);
|
||
|
template <> void PointerBuilder::setBlob<Data>(typename Data::Reader value);
|
||
|
template <> typename Data::Builder PointerBuilder::getBlob<Data>(
|
||
|
const void* defaultValue, ByteCount defaultSize);
|
||
|
template <> typename Data::Reader PointerReader::getBlob<Data>(
|
||
|
const void* defaultValue, ByteCount defaultSize) const;
|
||
|
|
||
|
inline PointerBuilder PointerBuilder::getRoot(
|
||
|
SegmentBuilder* segment, CapTableBuilder* capTable, word* location) {
|
||
|
return PointerBuilder(segment, capTable, reinterpret_cast<WirePointer*>(location));
|
||
|
}
|
||
|
|
||
|
inline PointerReader PointerReader::getRootUnchecked(const word* location) {
|
||
|
return PointerReader(nullptr, nullptr,
|
||
|
reinterpret_cast<const WirePointer*>(location), 0x7fffffff);
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
inline kj::ArrayPtr<byte> StructBuilder::getDataSectionAsBlob() {
|
||
|
return kj::ArrayPtr<byte>(reinterpret_cast<byte*>(data),
|
||
|
unbound(dataSize / BITS_PER_BYTE / BYTES));
|
||
|
}
|
||
|
|
||
|
inline _::ListBuilder StructBuilder::getPointerSectionAsList() {
|
||
|
return _::ListBuilder(segment, capTable, pointers, ONE * POINTERS * BITS_PER_POINTER / ELEMENTS,
|
||
|
pointerCount * (ONE * ELEMENTS / POINTERS),
|
||
|
ZERO * BITS, ONE * POINTERS, ElementSize::POINTER);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline bool StructBuilder::hasDataField(StructDataOffset offset) {
|
||
|
return getDataField<Mask<T>>(offset) != 0;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline bool StructBuilder::hasDataField<Void>(StructDataOffset offset) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline T StructBuilder::getDataField(StructDataOffset offset) {
|
||
|
return reinterpret_cast<WireValue<T>*>(data)[unbound(offset / ELEMENTS)].get();
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline bool StructBuilder::getDataField<bool>(StructDataOffset offset) {
|
||
|
BitCount32 boffset = offset * (ONE * BITS / ELEMENTS);
|
||
|
byte* b = reinterpret_cast<byte*>(data) + boffset / BITS_PER_BYTE;
|
||
|
return (*reinterpret_cast<uint8_t*>(b) &
|
||
|
unbound(ONE << (boffset % BITS_PER_BYTE / BITS))) != 0;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline Void StructBuilder::getDataField<Void>(StructDataOffset offset) {
|
||
|
return VOID;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline T StructBuilder::getDataField(StructDataOffset offset, Mask<T> mask) {
|
||
|
return unmask<T>(getDataField<Mask<T> >(offset), mask);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void StructBuilder::setDataField(StructDataOffset offset, kj::NoInfer<T> value) {
|
||
|
reinterpret_cast<WireValue<T>*>(data)[unbound(offset / ELEMENTS)].set(value);
|
||
|
}
|
||
|
|
||
|
#if CAPNP_CANONICALIZE_NAN
|
||
|
// Use mask() on floats and doubles to make sure we canonicalize NaNs.
|
||
|
template <>
|
||
|
inline void StructBuilder::setDataField<float>(StructDataOffset offset, float value) {
|
||
|
setDataField<uint32_t>(offset, mask<float>(value, 0));
|
||
|
}
|
||
|
template <>
|
||
|
inline void StructBuilder::setDataField<double>(StructDataOffset offset, double value) {
|
||
|
setDataField<uint64_t>(offset, mask<double>(value, 0));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
template <>
|
||
|
inline void StructBuilder::setDataField<bool>(StructDataOffset offset, bool value) {
|
||
|
auto boffset = offset * (ONE * BITS / ELEMENTS);
|
||
|
byte* b = reinterpret_cast<byte*>(data) + boffset / BITS_PER_BYTE;
|
||
|
uint bitnum = unboundMaxBits<3>(boffset % BITS_PER_BYTE / BITS);
|
||
|
*reinterpret_cast<uint8_t*>(b) = (*reinterpret_cast<uint8_t*>(b) & ~(1 << bitnum))
|
||
|
| (static_cast<uint8_t>(value) << bitnum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline void StructBuilder::setDataField<Void>(StructDataOffset offset, Void value) {}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void StructBuilder::setDataField(StructDataOffset offset,
|
||
|
kj::NoInfer<T> value, Mask<T> m) {
|
||
|
setDataField<Mask<T> >(offset, mask<T>(value, m));
|
||
|
}
|
||
|
|
||
|
inline PointerBuilder StructBuilder::getPointerField(StructPointerOffset ptrIndex) {
|
||
|
// Hacky because WirePointer is defined in the .c++ file (so is incomplete here).
|
||
|
return PointerBuilder(segment, capTable, reinterpret_cast<WirePointer*>(
|
||
|
reinterpret_cast<word*>(pointers) + ptrIndex * WORDS_PER_POINTER));
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
inline kj::ArrayPtr<const byte> StructReader::getDataSectionAsBlob() {
|
||
|
return kj::ArrayPtr<const byte>(reinterpret_cast<const byte*>(data),
|
||
|
unbound(dataSize / BITS_PER_BYTE / BYTES));
|
||
|
}
|
||
|
|
||
|
inline _::ListReader StructReader::getPointerSectionAsList() {
|
||
|
return _::ListReader(segment, capTable, pointers, pointerCount * (ONE * ELEMENTS / POINTERS),
|
||
|
ONE * POINTERS * BITS_PER_POINTER / ELEMENTS, ZERO * BITS, ONE * POINTERS,
|
||
|
ElementSize::POINTER, nestingLimit);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline bool StructReader::hasDataField(StructDataOffset offset) const {
|
||
|
return getDataField<Mask<T>>(offset) != 0;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline bool StructReader::hasDataField<Void>(StructDataOffset offset) const {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline T StructReader::getDataField(StructDataOffset offset) const {
|
||
|
if ((offset + ONE * ELEMENTS) * capnp::bitsPerElement<T>() <= dataSize) {
|
||
|
return reinterpret_cast<const WireValue<T>*>(data)[unbound(offset / ELEMENTS)].get();
|
||
|
} else {
|
||
|
return static_cast<T>(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline bool StructReader::getDataField<bool>(StructDataOffset offset) const {
|
||
|
auto boffset = offset * (ONE * BITS / ELEMENTS);
|
||
|
if (boffset < dataSize) {
|
||
|
const byte* b = reinterpret_cast<const byte*>(data) + boffset / BITS_PER_BYTE;
|
||
|
return (*reinterpret_cast<const uint8_t*>(b) &
|
||
|
unbound(ONE << (boffset % BITS_PER_BYTE / BITS))) != 0;
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline Void StructReader::getDataField<Void>(StructDataOffset offset) const {
|
||
|
return VOID;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
T StructReader::getDataField(StructDataOffset offset, Mask<T> mask) const {
|
||
|
return unmask<T>(getDataField<Mask<T> >(offset), mask);
|
||
|
}
|
||
|
|
||
|
inline PointerReader StructReader::getPointerField(StructPointerOffset ptrIndex) const {
|
||
|
if (ptrIndex < pointerCount) {
|
||
|
// Hacky because WirePointer is defined in the .c++ file (so is incomplete here).
|
||
|
return PointerReader(segment, capTable, reinterpret_cast<const WirePointer*>(
|
||
|
reinterpret_cast<const word*>(pointers) + ptrIndex * WORDS_PER_POINTER), nestingLimit);
|
||
|
} else{
|
||
|
return PointerReader();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
inline ListElementCount ListBuilder::size() const { return elementCount; }
|
||
|
|
||
|
template <typename T>
|
||
|
inline T ListBuilder::getDataElement(ElementCount index) {
|
||
|
return reinterpret_cast<WireValue<T>*>(
|
||
|
ptr + upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE)->get();
|
||
|
|
||
|
// TODO(perf): Benchmark this alternate implementation, which I suspect may make better use of
|
||
|
// the x86 SIB byte. Also use it for all the other getData/setData implementations below, and
|
||
|
// the various non-inline methods that look up pointers.
|
||
|
// Also if using this, consider changing ptr back to void* instead of byte*.
|
||
|
// return reinterpret_cast<WireValue<T>*>(ptr)[
|
||
|
// index / ELEMENTS * (step / capnp::bitsPerElement<T>())].get();
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline bool ListBuilder::getDataElement<bool>(ElementCount index) {
|
||
|
// Ignore step for bit lists because bit lists cannot be upgraded to struct lists.
|
||
|
auto bindex = index * (ONE * BITS / ELEMENTS);
|
||
|
byte* b = ptr + bindex / BITS_PER_BYTE;
|
||
|
return (*reinterpret_cast<uint8_t*>(b) &
|
||
|
unbound(ONE << (bindex % BITS_PER_BYTE / BITS))) != 0;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline Void ListBuilder::getDataElement<Void>(ElementCount index) {
|
||
|
return VOID;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void ListBuilder::setDataElement(ElementCount index, kj::NoInfer<T> value) {
|
||
|
reinterpret_cast<WireValue<T>*>(
|
||
|
ptr + upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE)->set(value);
|
||
|
}
|
||
|
|
||
|
#if CAPNP_CANONICALIZE_NAN
|
||
|
// Use mask() on floats and doubles to make sure we canonicalize NaNs.
|
||
|
template <>
|
||
|
inline void ListBuilder::setDataElement<float>(ElementCount index, float value) {
|
||
|
setDataElement<uint32_t>(index, mask<float>(value, 0));
|
||
|
}
|
||
|
template <>
|
||
|
inline void ListBuilder::setDataElement<double>(ElementCount index, double value) {
|
||
|
setDataElement<uint64_t>(index, mask<double>(value, 0));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
template <>
|
||
|
inline void ListBuilder::setDataElement<bool>(ElementCount index, bool value) {
|
||
|
// Ignore stepBytes for bit lists because bit lists cannot be upgraded to struct lists.
|
||
|
auto bindex = index * (ONE * BITS / ELEMENTS);
|
||
|
byte* b = ptr + bindex / BITS_PER_BYTE;
|
||
|
auto bitnum = bindex % BITS_PER_BYTE / BITS;
|
||
|
*reinterpret_cast<uint8_t*>(b) = (*reinterpret_cast<uint8_t*>(b) & ~(1 << unbound(bitnum)))
|
||
|
| (static_cast<uint8_t>(value) << unbound(bitnum));
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline void ListBuilder::setDataElement<Void>(ElementCount index, Void value) {}
|
||
|
|
||
|
inline PointerBuilder ListBuilder::getPointerElement(ElementCount index) {
|
||
|
return PointerBuilder(segment, capTable, reinterpret_cast<WirePointer*>(ptr +
|
||
|
upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE));
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
inline ListElementCount ListReader::size() const { return elementCount; }
|
||
|
|
||
|
template <typename T>
|
||
|
inline T ListReader::getDataElement(ElementCount index) const {
|
||
|
return reinterpret_cast<const WireValue<T>*>(
|
||
|
ptr + upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE)->get();
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline bool ListReader::getDataElement<bool>(ElementCount index) const {
|
||
|
// Ignore step for bit lists because bit lists cannot be upgraded to struct lists.
|
||
|
auto bindex = index * (ONE * BITS / ELEMENTS);
|
||
|
const byte* b = ptr + bindex / BITS_PER_BYTE;
|
||
|
return (*reinterpret_cast<const uint8_t*>(b) &
|
||
|
unbound(ONE << (bindex % BITS_PER_BYTE / BITS))) != 0;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline Void ListReader::getDataElement<Void>(ElementCount index) const {
|
||
|
return VOID;
|
||
|
}
|
||
|
|
||
|
inline PointerReader ListReader::getPointerElement(ElementCount index) const {
|
||
|
return PointerReader(segment, capTable, reinterpret_cast<const WirePointer*>(
|
||
|
ptr + upgradeBound<uint64_t>(index) * step / BITS_PER_BYTE), nestingLimit);
|
||
|
}
|
||
|
|
||
|
// -------------------------------------------------------------------
|
||
|
|
||
|
inline OrphanBuilder::OrphanBuilder(OrphanBuilder&& other) noexcept
|
||
|
: segment(other.segment), capTable(other.capTable), location(other.location) {
|
||
|
memcpy(&tag, &other.tag, sizeof(tag)); // Needs memcpy to comply with aliasing rules.
|
||
|
other.segment = nullptr;
|
||
|
other.location = nullptr;
|
||
|
}
|
||
|
|
||
|
inline OrphanBuilder::~OrphanBuilder() noexcept(false) {
|
||
|
if (segment != nullptr) euthanize();
|
||
|
}
|
||
|
|
||
|
inline OrphanBuilder& OrphanBuilder::operator=(OrphanBuilder&& other) {
|
||
|
// With normal smart pointers, it's important to handle the case where the incoming pointer
|
||
|
// is actually transitively owned by this one. In this case, euthanize() would destroy `other`
|
||
|
// before we copied it. This isn't possible in the case of `OrphanBuilder` because it only
|
||
|
// owns message objects, and `other` is not itself a message object, therefore cannot possibly
|
||
|
// be transitively owned by `this`.
|
||
|
|
||
|
if (segment != nullptr) euthanize();
|
||
|
segment = other.segment;
|
||
|
capTable = other.capTable;
|
||
|
location = other.location;
|
||
|
memcpy(&tag, &other.tag, sizeof(tag)); // Needs memcpy to comply with aliasing rules.
|
||
|
other.segment = nullptr;
|
||
|
other.location = nullptr;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
} // namespace _ (private)
|
||
|
} // namespace capnp
|
||
|
|
||
|
#endif // CAPNP_LAYOUT_H_
|