You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
441 lines
18 KiB
441 lines
18 KiB
7 years ago
|
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
||
|
// Licensed under the MIT License:
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to deal
|
||
|
// in the Software without restriction, including without limitation the rights
|
||
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
// copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
// THE SOFTWARE.
|
||
|
|
||
|
#ifndef CAPNP_ORPHAN_H_
|
||
|
#define CAPNP_ORPHAN_H_
|
||
|
|
||
|
#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
|
||
|
#pragma GCC system_header
|
||
|
#endif
|
||
|
|
||
|
#include "layout.h"
|
||
|
|
||
|
namespace capnp {
|
||
|
|
||
|
class StructSchema;
|
||
|
class ListSchema;
|
||
|
struct DynamicStruct;
|
||
|
struct DynamicList;
|
||
|
namespace _ { struct OrphanageInternal; }
|
||
|
|
||
|
template <typename T>
|
||
|
class Orphan {
|
||
|
// Represents an object which is allocated within some message builder but has no pointers
|
||
|
// pointing at it. An Orphan can later be "adopted" by some other object as one of that object's
|
||
|
// fields, without having to copy the orphan. For a field `foo` of pointer type, the generated
|
||
|
// code will define builder methods `void adoptFoo(Orphan<T>)` and `Orphan<T> disownFoo()`.
|
||
|
// Orphans can also be created independently of any parent using an Orphanage.
|
||
|
//
|
||
|
// `Orphan<T>` can be moved but not copied, like `Own<T>`, so that it is impossible for one
|
||
|
// orphan to be adopted multiple times. If an orphan is destroyed without being adopted, its
|
||
|
// contents are zero'd out (and possibly reused, if we ever implement the ability to reuse space
|
||
|
// in a message arena).
|
||
|
|
||
|
public:
|
||
|
Orphan() = default;
|
||
|
KJ_DISALLOW_COPY(Orphan);
|
||
|
Orphan(Orphan&&) = default;
|
||
|
Orphan& operator=(Orphan&&) = default;
|
||
|
inline Orphan(_::OrphanBuilder&& builder): builder(kj::mv(builder)) {}
|
||
|
|
||
|
inline BuilderFor<T> get();
|
||
|
// Get the underlying builder. If the orphan is null, this will allocate and return a default
|
||
|
// object rather than crash. This is done for security -- otherwise, you might enable a DoS
|
||
|
// attack any time you disown a field and fail to check if it is null. In the case of structs,
|
||
|
// this means that the orphan is no longer null after get() returns. In the case of lists,
|
||
|
// no actual object is allocated since a simple empty ListBuilder can be returned.
|
||
|
|
||
|
inline ReaderFor<T> getReader() const;
|
||
|
|
||
|
inline bool operator==(decltype(nullptr)) const { return builder == nullptr; }
|
||
|
inline bool operator!=(decltype(nullptr)) const { return builder != nullptr; }
|
||
|
|
||
|
inline void truncate(uint size);
|
||
|
// Resize an object (which must be a list or a blob) to the given size.
|
||
|
//
|
||
|
// If the new size is less than the original, the remaining elements will be discarded. The
|
||
|
// list is never moved in this case. If the list happens to be located at the end of its segment
|
||
|
// (which is always true if the list was the last thing allocated), the removed memory will be
|
||
|
// reclaimed (reducing the messag size), otherwise it is simply zeroed. The reclaiming behavior
|
||
|
// is particularly useful for allocating buffer space when you aren't sure how much space you
|
||
|
// actually need: you can pre-allocate, say, a 4k byte array, read() from a file into it, and
|
||
|
// then truncate it back to the amount of space actually used.
|
||
|
//
|
||
|
// If the new size is greater than the original, the list is extended with default values. If
|
||
|
// the list is the last object in its segment *and* there is enough space left in the segment to
|
||
|
// extend it to cover the new values, then the list is extended in-place. Otherwise, it must be
|
||
|
// moved to a new location, leaving a zero'd hole in the previous space that won't be filled.
|
||
|
// This copy is shallow; sub-objects will simply be reparented, not copied.
|
||
|
//
|
||
|
// Any existing readers or builders pointing at the object are invalidated by this call (even if
|
||
|
// it doesn't move). You must call `get()` or `getReader()` again to get the new, valid pointer.
|
||
|
|
||
|
private:
|
||
|
_::OrphanBuilder builder;
|
||
|
|
||
|
template <typename, Kind>
|
||
|
friend struct _::PointerHelpers;
|
||
|
template <typename, Kind>
|
||
|
friend struct List;
|
||
|
template <typename U>
|
||
|
friend class Orphan;
|
||
|
friend class Orphanage;
|
||
|
friend class MessageBuilder;
|
||
|
};
|
||
|
|
||
|
class Orphanage: private kj::DisallowConstCopy {
|
||
|
// Use to directly allocate Orphan objects, without having a parent object allocate and then
|
||
|
// disown the object.
|
||
|
|
||
|
public:
|
||
|
inline Orphanage(): arena(nullptr) {}
|
||
|
|
||
|
template <typename BuilderType>
|
||
|
static Orphanage getForMessageContaining(BuilderType builder);
|
||
|
// Construct an Orphanage that allocates within the message containing the given Builder. This
|
||
|
// allows the constructed Orphans to be adopted by objects within said message.
|
||
|
//
|
||
|
// This constructor takes the builder rather than having the builder have a getOrphanage() method
|
||
|
// because this is an advanced feature and we don't want to pollute the builder APIs with it.
|
||
|
//
|
||
|
// Note that if you have a direct pointer to the `MessageBuilder`, you can simply call its
|
||
|
// `getOrphanage()` method.
|
||
|
|
||
|
template <typename RootType>
|
||
|
Orphan<RootType> newOrphan() const;
|
||
|
// Allocate a new orphaned struct.
|
||
|
|
||
|
template <typename RootType>
|
||
|
Orphan<RootType> newOrphan(uint size) const;
|
||
|
// Allocate a new orphaned list or blob.
|
||
|
|
||
|
Orphan<DynamicStruct> newOrphan(StructSchema schema) const;
|
||
|
// Dynamically create an orphan struct with the given schema. You must
|
||
|
// #include <capnp/dynamic.h> to use this.
|
||
|
|
||
|
Orphan<DynamicList> newOrphan(ListSchema schema, uint size) const;
|
||
|
// Dynamically create an orphan list with the given schema. You must #include <capnp/dynamic.h>
|
||
|
// to use this.
|
||
|
|
||
|
template <typename Reader>
|
||
|
Orphan<FromReader<Reader>> newOrphanCopy(Reader copyFrom) const;
|
||
|
// Allocate a new orphaned object (struct, list, or blob) and initialize it as a copy of the
|
||
|
// given object.
|
||
|
|
||
|
template <typename T>
|
||
|
Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<T> lists) const;
|
||
|
template <typename T>
|
||
|
Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<const T> lists) const;
|
||
|
// Given an array of List readers, copy and concatenate the lists, creating a new Orphan.
|
||
|
//
|
||
|
// Note that compared to allocating the list yourself and using `setWithCaveats()` to set each
|
||
|
// item, this method avoids the "caveats": the new list will be allocated with the element size
|
||
|
// being the maximum of that from all the input lists. This is particularly important when
|
||
|
// concatenating struct lists: if the lists were created using a newer version of the protocol
|
||
|
// in which some new fields had been added to the struct, using `setWithCaveats()` would
|
||
|
// truncate off those new fields.
|
||
|
|
||
|
Orphan<Data> referenceExternalData(Data::Reader data) const;
|
||
|
// Creates an Orphan<Data> that points at an existing region of memory (e.g. from another message)
|
||
|
// without copying it. There are some SEVERE restrictions on how this can be used:
|
||
|
// - The memory must remain valid until the `MessageBuilder` is destroyed (even if the orphan is
|
||
|
// abandoned).
|
||
|
// - Because the data is const, you will not be allowed to obtain a `Data::Builder`
|
||
|
// for this blob. Any call which would return such a builder will throw an exception. You
|
||
|
// can, however, obtain a Reader, e.g. via orphan.getReader() or from a parent Reader (once
|
||
|
// the orphan is adopted). It is your responsibility to make sure your code can deal with
|
||
|
// these problems when using this optimization; if you can't, allocate a copy instead.
|
||
|
// - `data.begin()` must be aligned to a machine word boundary (32-bit or 64-bit depending on
|
||
|
// the CPU). Any pointer returned by malloc() as well as any data blob obtained from another
|
||
|
// Cap'n Proto message satisfies this.
|
||
|
// - If `data.size()` is not a multiple of 8, extra bytes past data.end() up until the next 8-byte
|
||
|
// boundary will be visible in the raw message when it is written out. Thus, there must be no
|
||
|
// secrets in these bytes. Data blobs obtained from other Cap'n Proto messages should be safe
|
||
|
// as these bytes should be zero (unless the sender had the same problem).
|
||
|
//
|
||
|
// The array will actually become one of the message's segments. The data can thus be adopted
|
||
|
// into the message tree without copying it. This is particularly useful when referencing very
|
||
|
// large blobs, such as whole mmap'd files.
|
||
|
|
||
|
private:
|
||
|
_::BuilderArena* arena;
|
||
|
_::CapTableBuilder* capTable;
|
||
|
|
||
|
inline explicit Orphanage(_::BuilderArena* arena, _::CapTableBuilder* capTable)
|
||
|
: arena(arena), capTable(capTable) {}
|
||
|
|
||
|
template <typename T, Kind = CAPNP_KIND(T)>
|
||
|
struct GetInnerBuilder;
|
||
|
template <typename T, Kind = CAPNP_KIND(T)>
|
||
|
struct GetInnerReader;
|
||
|
template <typename T>
|
||
|
struct NewOrphanListImpl;
|
||
|
|
||
|
friend class MessageBuilder;
|
||
|
friend struct _::OrphanageInternal;
|
||
|
};
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Inline implementation details.
|
||
|
|
||
|
namespace _ { // private
|
||
|
|
||
|
template <typename T, Kind = CAPNP_KIND(T)>
|
||
|
struct OrphanGetImpl;
|
||
|
|
||
|
template <typename T>
|
||
|
struct OrphanGetImpl<T, Kind::PRIMITIVE> {
|
||
|
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
|
||
|
builder.truncate(size, _::elementSizeForType<T>());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
struct OrphanGetImpl<T, Kind::STRUCT> {
|
||
|
static inline typename T::Builder apply(_::OrphanBuilder& builder) {
|
||
|
return typename T::Builder(builder.asStruct(_::structSize<T>()));
|
||
|
}
|
||
|
static inline typename T::Reader applyReader(const _::OrphanBuilder& builder) {
|
||
|
return typename T::Reader(builder.asStructReader(_::structSize<T>()));
|
||
|
}
|
||
|
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
|
||
|
builder.truncate(size, _::structSize<T>());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#if !CAPNP_LITE
|
||
|
template <typename T>
|
||
|
struct OrphanGetImpl<T, Kind::INTERFACE> {
|
||
|
static inline typename T::Client apply(_::OrphanBuilder& builder) {
|
||
|
return typename T::Client(builder.asCapability());
|
||
|
}
|
||
|
static inline typename T::Client applyReader(const _::OrphanBuilder& builder) {
|
||
|
return typename T::Client(builder.asCapability());
|
||
|
}
|
||
|
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
|
||
|
builder.truncate(size, ElementSize::POINTER);
|
||
|
}
|
||
|
};
|
||
|
#endif // !CAPNP_LITE
|
||
|
|
||
|
template <typename T, Kind k>
|
||
|
struct OrphanGetImpl<List<T, k>, Kind::LIST> {
|
||
|
static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
|
||
|
return typename List<T>::Builder(builder.asList(_::ElementSizeForType<T>::value));
|
||
|
}
|
||
|
static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
|
||
|
return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
|
||
|
}
|
||
|
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
|
||
|
builder.truncate(size, ElementSize::POINTER);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
struct OrphanGetImpl<List<T, Kind::STRUCT>, Kind::LIST> {
|
||
|
static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
|
||
|
return typename List<T>::Builder(builder.asStructList(_::structSize<T>()));
|
||
|
}
|
||
|
static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
|
||
|
return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
|
||
|
}
|
||
|
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
|
||
|
builder.truncate(size, ElementSize::POINTER);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct OrphanGetImpl<Text, Kind::BLOB> {
|
||
|
static inline Text::Builder apply(_::OrphanBuilder& builder) {
|
||
|
return Text::Builder(builder.asText());
|
||
|
}
|
||
|
static inline Text::Reader applyReader(const _::OrphanBuilder& builder) {
|
||
|
return Text::Reader(builder.asTextReader());
|
||
|
}
|
||
|
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
|
||
|
builder.truncate(size, ElementSize::POINTER);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct OrphanGetImpl<Data, Kind::BLOB> {
|
||
|
static inline Data::Builder apply(_::OrphanBuilder& builder) {
|
||
|
return Data::Builder(builder.asData());
|
||
|
}
|
||
|
static inline Data::Reader applyReader(const _::OrphanBuilder& builder) {
|
||
|
return Data::Reader(builder.asDataReader());
|
||
|
}
|
||
|
static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) {
|
||
|
builder.truncate(size, ElementSize::POINTER);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct OrphanageInternal {
|
||
|
static inline _::BuilderArena* getArena(Orphanage orphanage) { return orphanage.arena; }
|
||
|
static inline _::CapTableBuilder* getCapTable(Orphanage orphanage) { return orphanage.capTable; }
|
||
|
};
|
||
|
|
||
|
} // namespace _ (private)
|
||
|
|
||
|
template <typename T>
|
||
|
inline BuilderFor<T> Orphan<T>::get() {
|
||
|
return _::OrphanGetImpl<T>::apply(builder);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline ReaderFor<T> Orphan<T>::getReader() const {
|
||
|
return _::OrphanGetImpl<T>::applyReader(builder);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void Orphan<T>::truncate(uint size) {
|
||
|
_::OrphanGetImpl<ListElementType<T>>::truncateListOf(builder, bounded(size) * ELEMENTS);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline void Orphan<Text>::truncate(uint size) {
|
||
|
builder.truncateText(bounded(size) * ELEMENTS);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline void Orphan<Data>::truncate(uint size) {
|
||
|
builder.truncate(bounded(size) * ELEMENTS, ElementSize::BYTE);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
struct Orphanage::GetInnerBuilder<T, Kind::STRUCT> {
|
||
|
static inline _::StructBuilder apply(typename T::Builder& t) {
|
||
|
return t._builder;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
struct Orphanage::GetInnerBuilder<T, Kind::LIST> {
|
||
|
static inline _::ListBuilder apply(typename T::Builder& t) {
|
||
|
return t.builder;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename BuilderType>
|
||
|
Orphanage Orphanage::getForMessageContaining(BuilderType builder) {
|
||
|
auto inner = GetInnerBuilder<FromBuilder<BuilderType>>::apply(builder);
|
||
|
return Orphanage(inner.getArena(), inner.getCapTable());
|
||
|
}
|
||
|
|
||
|
template <typename RootType>
|
||
|
Orphan<RootType> Orphanage::newOrphan() const {
|
||
|
return Orphan<RootType>(_::OrphanBuilder::initStruct(arena, capTable, _::structSize<RootType>()));
|
||
|
}
|
||
|
|
||
|
template <typename T, Kind k>
|
||
|
struct Orphanage::NewOrphanListImpl<List<T, k>> {
|
||
|
static inline _::OrphanBuilder apply(
|
||
|
_::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
|
||
|
return _::OrphanBuilder::initList(
|
||
|
arena, capTable, bounded(size) * ELEMENTS, _::ElementSizeForType<T>::value);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
struct Orphanage::NewOrphanListImpl<List<T, Kind::STRUCT>> {
|
||
|
static inline _::OrphanBuilder apply(
|
||
|
_::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
|
||
|
return _::OrphanBuilder::initStructList(
|
||
|
arena, capTable, bounded(size) * ELEMENTS, _::structSize<T>());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct Orphanage::NewOrphanListImpl<Text> {
|
||
|
static inline _::OrphanBuilder apply(
|
||
|
_::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
|
||
|
return _::OrphanBuilder::initText(arena, capTable, bounded(size) * BYTES);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
struct Orphanage::NewOrphanListImpl<Data> {
|
||
|
static inline _::OrphanBuilder apply(
|
||
|
_::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) {
|
||
|
return _::OrphanBuilder::initData(arena, capTable, bounded(size) * BYTES);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename RootType>
|
||
|
Orphan<RootType> Orphanage::newOrphan(uint size) const {
|
||
|
return Orphan<RootType>(NewOrphanListImpl<RootType>::apply(arena, capTable, size));
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
struct Orphanage::GetInnerReader<T, Kind::STRUCT> {
|
||
|
static inline _::StructReader apply(const typename T::Reader& t) {
|
||
|
return t._reader;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
struct Orphanage::GetInnerReader<T, Kind::LIST> {
|
||
|
static inline _::ListReader apply(const typename T::Reader& t) {
|
||
|
return t.reader;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
struct Orphanage::GetInnerReader<T, Kind::BLOB> {
|
||
|
static inline const typename T::Reader& apply(const typename T::Reader& t) {
|
||
|
return t;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename Reader>
|
||
|
inline Orphan<FromReader<Reader>> Orphanage::newOrphanCopy(Reader copyFrom) const {
|
||
|
return Orphan<FromReader<Reader>>(_::OrphanBuilder::copy(
|
||
|
arena, capTable, GetInnerReader<FromReader<Reader>>::apply(copyFrom)));
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline Orphan<List<ListElementType<FromReader<T>>>>
|
||
|
Orphanage::newOrphanConcat(kj::ArrayPtr<T> lists) const {
|
||
|
return newOrphanConcat(kj::implicitCast<kj::ArrayPtr<const T>>(lists));
|
||
|
}
|
||
|
template <typename T>
|
||
|
inline Orphan<List<ListElementType<FromReader<T>>>>
|
||
|
Orphanage::newOrphanConcat(kj::ArrayPtr<const T> lists) const {
|
||
|
// Optimization / simplification: Rely on List<T>::Reader containing nothing except a
|
||
|
// _::ListReader.
|
||
|
static_assert(sizeof(T) == sizeof(_::ListReader), "lists are not bare readers?");
|
||
|
kj::ArrayPtr<const _::ListReader> raw(
|
||
|
reinterpret_cast<const _::ListReader*>(lists.begin()), lists.size());
|
||
|
typedef ListElementType<FromReader<T>> Element;
|
||
|
return Orphan<List<Element>>(
|
||
|
_::OrphanBuilder::concat(arena, capTable,
|
||
|
_::elementSizeForType<Element>(),
|
||
|
_::minStructSizeForElement<Element>(), raw));
|
||
|
}
|
||
|
|
||
|
inline Orphan<Data> Orphanage::referenceExternalData(Data::Reader data) const {
|
||
|
return Orphan<Data>(_::OrphanBuilder::referenceExternalData(arena, data));
|
||
|
}
|
||
|
|
||
|
} // namespace capnp
|
||
|
|
||
|
#endif // CAPNP_ORPHAN_H_
|