You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
814 lines
26 KiB
814 lines
26 KiB
7 years ago
|
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
||
|
// Licensed under the MIT License:
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to deal
|
||
|
// in the Software without restriction, including without limitation the rights
|
||
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
// copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
// THE SOFTWARE.
|
||
|
|
||
|
#ifndef KJ_ARRAY_H_
|
||
|
#define KJ_ARRAY_H_
|
||
|
|
||
|
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
||
|
#pragma GCC system_header
|
||
|
#endif
|
||
|
|
||
|
#include "common.h"
|
||
|
#include <string.h>
|
||
|
#include <initializer_list>
|
||
|
|
||
|
namespace kj {
|
||
|
|
||
|
// =======================================================================================
|
||
|
// ArrayDisposer -- Implementation details.
|
||
|
|
||
|
class ArrayDisposer {
|
||
|
// Much like Disposer from memory.h.
|
||
|
|
||
|
protected:
|
||
|
// Do not declare a destructor, as doing so will force a global initializer for
|
||
|
// HeapArrayDisposer::instance.
|
||
|
|
||
|
virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
|
||
|
size_t capacity, void (*destroyElement)(void*)) const = 0;
|
||
|
// Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr
|
||
|
// if the elements have trivial destructors. `capacity` is the amount of space that was
|
||
|
// allocated while `elementCount` is the number of elements that were actually constructed;
|
||
|
// these are always the same number for Array<T> but may be different when using ArrayBuilder<T>.
|
||
|
|
||
|
public:
|
||
|
|
||
|
template <typename T>
|
||
|
void dispose(T* firstElement, size_t elementCount, size_t capacity) const;
|
||
|
// Helper wrapper around disposeImpl().
|
||
|
//
|
||
|
// Callers must not call dispose() on the same array twice, even if the first call throws
|
||
|
// an exception.
|
||
|
|
||
|
private:
|
||
|
template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)>
|
||
|
struct Dispose_;
|
||
|
};
|
||
|
|
||
|
class ExceptionSafeArrayUtil {
|
||
|
// Utility class that assists in constructing or destroying elements of an array, where the
|
||
|
// constructor or destructor could throw exceptions. In case of an exception,
|
||
|
// ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been
|
||
|
// constructed but not destroyed. Remember that destructors that throw exceptions are required
|
||
|
// to use UnwindDetector to detect unwind and avoid exceptions in this case. Therefore, no more
|
||
|
// than one exception will be thrown (and the program will not terminate).
|
||
|
|
||
|
public:
|
||
|
inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount,
|
||
|
void (*destroyElement)(void*))
|
||
|
: pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount),
|
||
|
elementSize(elementSize), constructedElementCount(constructedElementCount),
|
||
|
destroyElement(destroyElement) {}
|
||
|
KJ_DISALLOW_COPY(ExceptionSafeArrayUtil);
|
||
|
|
||
|
inline ~ExceptionSafeArrayUtil() noexcept(false) {
|
||
|
if (constructedElementCount > 0) destroyAll();
|
||
|
}
|
||
|
|
||
|
void construct(size_t count, void (*constructElement)(void*));
|
||
|
// Construct the given number of elements.
|
||
|
|
||
|
void destroyAll();
|
||
|
// Destroy all elements. Call this immediately before ExceptionSafeArrayUtil goes out-of-scope
|
||
|
// to ensure that one element throwing an exception does not prevent the others from being
|
||
|
// destroyed.
|
||
|
|
||
|
void release() { constructedElementCount = 0; }
|
||
|
// Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements.
|
||
|
// Call this after you've successfully finished constructing.
|
||
|
|
||
|
private:
|
||
|
byte* pos;
|
||
|
size_t elementSize;
|
||
|
size_t constructedElementCount;
|
||
|
void (*destroyElement)(void*);
|
||
|
};
|
||
|
|
||
|
class DestructorOnlyArrayDisposer: public ArrayDisposer {
|
||
|
public:
|
||
|
static const DestructorOnlyArrayDisposer instance;
|
||
|
|
||
|
void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
|
||
|
size_t capacity, void (*destroyElement)(void*)) const override;
|
||
|
};
|
||
|
|
||
|
class NullArrayDisposer: public ArrayDisposer {
|
||
|
// An ArrayDisposer that does nothing. Can be used to construct a fake Arrays that doesn't
|
||
|
// actually own its content.
|
||
|
|
||
|
public:
|
||
|
static const NullArrayDisposer instance;
|
||
|
|
||
|
void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
|
||
|
size_t capacity, void (*destroyElement)(void*)) const override;
|
||
|
};
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Array
|
||
|
|
||
|
template <typename T>
|
||
|
class Array {
|
||
|
// An owned array which will automatically be disposed of (using an ArrayDisposer) in the
|
||
|
// destructor. Can be moved, but not copied. Much like Own<T>, but for arrays rather than
|
||
|
// single objects.
|
||
|
|
||
|
public:
|
||
|
inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {}
|
||
|
inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {}
|
||
|
inline Array(Array&& other) noexcept
|
||
|
: ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
|
||
|
other.ptr = nullptr;
|
||
|
other.size_ = 0;
|
||
|
}
|
||
|
inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept
|
||
|
: ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
|
||
|
other.ptr = nullptr;
|
||
|
other.size_ = 0;
|
||
|
}
|
||
|
inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer)
|
||
|
: ptr(firstElement), size_(size), disposer(&disposer) {}
|
||
|
|
||
|
KJ_DISALLOW_COPY(Array);
|
||
|
inline ~Array() noexcept { dispose(); }
|
||
|
|
||
|
inline operator ArrayPtr<T>() {
|
||
|
return ArrayPtr<T>(ptr, size_);
|
||
|
}
|
||
|
inline operator ArrayPtr<const T>() const {
|
||
|
return ArrayPtr<T>(ptr, size_);
|
||
|
}
|
||
|
inline ArrayPtr<T> asPtr() {
|
||
|
return ArrayPtr<T>(ptr, size_);
|
||
|
}
|
||
|
inline ArrayPtr<const T> asPtr() const {
|
||
|
return ArrayPtr<T>(ptr, size_);
|
||
|
}
|
||
|
|
||
|
inline size_t size() const { return size_; }
|
||
|
inline T& operator[](size_t index) const {
|
||
|
KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
|
||
|
return ptr[index];
|
||
|
}
|
||
|
|
||
|
inline const T* begin() const { return ptr; }
|
||
|
inline const T* end() const { return ptr + size_; }
|
||
|
inline const T& front() const { return *ptr; }
|
||
|
inline const T& back() const { return *(ptr + size_ - 1); }
|
||
|
inline T* begin() { return ptr; }
|
||
|
inline T* end() { return ptr + size_; }
|
||
|
inline T& front() { return *ptr; }
|
||
|
inline T& back() { return *(ptr + size_ - 1); }
|
||
|
|
||
|
inline ArrayPtr<T> slice(size_t start, size_t end) {
|
||
|
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
|
||
|
return ArrayPtr<T>(ptr + start, end - start);
|
||
|
}
|
||
|
inline ArrayPtr<const T> slice(size_t start, size_t end) const {
|
||
|
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
|
||
|
return ArrayPtr<const T>(ptr + start, end - start);
|
||
|
}
|
||
|
|
||
|
inline ArrayPtr<const byte> asBytes() const { return asPtr().asBytes(); }
|
||
|
inline ArrayPtr<PropagateConst<T, byte>> asBytes() { return asPtr().asBytes(); }
|
||
|
inline ArrayPtr<const char> asChars() const { return asPtr().asChars(); }
|
||
|
inline ArrayPtr<PropagateConst<T, char>> asChars() { return asPtr().asChars(); }
|
||
|
|
||
|
inline Array<PropagateConst<T, byte>> releaseAsBytes() {
|
||
|
// Like asBytes() but transfers ownership.
|
||
|
static_assert(sizeof(T) == sizeof(byte),
|
||
|
"releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars).");
|
||
|
Array<PropagateConst<T, byte>> result(
|
||
|
reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_, *disposer);
|
||
|
ptr = nullptr;
|
||
|
size_ = 0;
|
||
|
return result;
|
||
|
}
|
||
|
inline Array<PropagateConst<T, char>> releaseAsChars() {
|
||
|
// Like asChars() but transfers ownership.
|
||
|
static_assert(sizeof(T) == sizeof(PropagateConst<T, char>),
|
||
|
"releaseAsChars() only possible on arrays with char-size elements (e.g. bytes).");
|
||
|
Array<PropagateConst<T, char>> result(
|
||
|
reinterpret_cast<PropagateConst<T, char>*>(ptr), size_, *disposer);
|
||
|
ptr = nullptr;
|
||
|
size_ = 0;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
|
||
|
inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
|
||
|
|
||
|
inline Array& operator=(decltype(nullptr)) {
|
||
|
dispose();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
inline Array& operator=(Array&& other) {
|
||
|
dispose();
|
||
|
ptr = other.ptr;
|
||
|
size_ = other.size_;
|
||
|
disposer = other.disposer;
|
||
|
other.ptr = nullptr;
|
||
|
other.size_ = 0;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
T* ptr;
|
||
|
size_t size_;
|
||
|
const ArrayDisposer* disposer;
|
||
|
|
||
|
inline void dispose() {
|
||
|
// Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
|
||
|
// dispose again.
|
||
|
T* ptrCopy = ptr;
|
||
|
size_t sizeCopy = size_;
|
||
|
if (ptrCopy != nullptr) {
|
||
|
ptr = nullptr;
|
||
|
size_ = 0;
|
||
|
disposer->dispose(ptrCopy, sizeCopy, sizeCopy);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename U>
|
||
|
friend class Array;
|
||
|
};
|
||
|
|
||
|
static_assert(!canMemcpy<Array<char>>(), "canMemcpy<>() is broken");
|
||
|
|
||
|
namespace _ { // private
|
||
|
|
||
|
class HeapArrayDisposer final: public ArrayDisposer {
|
||
|
public:
|
||
|
template <typename T>
|
||
|
static T* allocate(size_t count);
|
||
|
template <typename T>
|
||
|
static T* allocateUninitialized(size_t count);
|
||
|
|
||
|
static const HeapArrayDisposer instance;
|
||
|
|
||
|
private:
|
||
|
static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity,
|
||
|
void (*constructElement)(void*), void (*destroyElement)(void*));
|
||
|
// Allocates and constructs the array. Both function pointers are null if the constructor is
|
||
|
// trivial, otherwise destroyElement is null if the constructor doesn't throw.
|
||
|
|
||
|
virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
|
||
|
size_t capacity, void (*destroyElement)(void*)) const override;
|
||
|
|
||
|
template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T),
|
||
|
bool hasNothrowConstructor = __has_nothrow_constructor(T)>
|
||
|
struct Allocate_;
|
||
|
};
|
||
|
|
||
|
} // namespace _ (private)
|
||
|
|
||
|
template <typename T>
|
||
|
inline Array<T> heapArray(size_t size) {
|
||
|
// Much like `heap<T>()` from memory.h, allocates a new array on the heap.
|
||
|
|
||
|
return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size,
|
||
|
_::HeapArrayDisposer::instance);
|
||
|
}
|
||
|
|
||
|
template <typename T> Array<T> heapArray(const T* content, size_t size);
|
||
|
template <typename T> Array<T> heapArray(ArrayPtr<T> content);
|
||
|
template <typename T> Array<T> heapArray(ArrayPtr<const T> content);
|
||
|
template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end);
|
||
|
template <typename T> Array<T> heapArray(std::initializer_list<T> init);
|
||
|
// Allocate a heap array containing a copy of the given content.
|
||
|
|
||
|
template <typename T, typename Container>
|
||
|
Array<T> heapArrayFromIterable(Container&& a) { return heapArray<T>(a.begin(), a.end()); }
|
||
|
template <typename T>
|
||
|
Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); }
|
||
|
|
||
|
// =======================================================================================
|
||
|
// ArrayBuilder
|
||
|
|
||
|
template <typename T>
|
||
|
class ArrayBuilder {
|
||
|
// Class which lets you build an Array<T> specifying the exact constructor arguments for each
|
||
|
// element, rather than starting by default-constructing them.
|
||
|
|
||
|
public:
|
||
|
ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
|
||
|
ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
|
||
|
explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity,
|
||
|
const ArrayDisposer& disposer)
|
||
|
: ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity),
|
||
|
disposer(&disposer) {}
|
||
|
ArrayBuilder(ArrayBuilder&& other)
|
||
|
: ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) {
|
||
|
other.ptr = nullptr;
|
||
|
other.pos = nullptr;
|
||
|
other.endPtr = nullptr;
|
||
|
}
|
||
|
KJ_DISALLOW_COPY(ArrayBuilder);
|
||
|
inline ~ArrayBuilder() noexcept(false) { dispose(); }
|
||
|
|
||
|
inline operator ArrayPtr<T>() {
|
||
|
return arrayPtr(ptr, pos);
|
||
|
}
|
||
|
inline operator ArrayPtr<const T>() const {
|
||
|
return arrayPtr(ptr, pos);
|
||
|
}
|
||
|
inline ArrayPtr<T> asPtr() {
|
||
|
return arrayPtr(ptr, pos);
|
||
|
}
|
||
|
inline ArrayPtr<const T> asPtr() const {
|
||
|
return arrayPtr(ptr, pos);
|
||
|
}
|
||
|
|
||
|
inline size_t size() const { return pos - ptr; }
|
||
|
inline size_t capacity() const { return endPtr - ptr; }
|
||
|
inline T& operator[](size_t index) const {
|
||
|
KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
|
||
|
return ptr[index];
|
||
|
}
|
||
|
|
||
|
inline const T* begin() const { return ptr; }
|
||
|
inline const T* end() const { return pos; }
|
||
|
inline const T& front() const { return *ptr; }
|
||
|
inline const T& back() const { return *(pos - 1); }
|
||
|
inline T* begin() { return ptr; }
|
||
|
inline T* end() { return pos; }
|
||
|
inline T& front() { return *ptr; }
|
||
|
inline T& back() { return *(pos - 1); }
|
||
|
|
||
|
ArrayBuilder& operator=(ArrayBuilder&& other) {
|
||
|
dispose();
|
||
|
ptr = other.ptr;
|
||
|
pos = other.pos;
|
||
|
endPtr = other.endPtr;
|
||
|
disposer = other.disposer;
|
||
|
other.ptr = nullptr;
|
||
|
other.pos = nullptr;
|
||
|
other.endPtr = nullptr;
|
||
|
return *this;
|
||
|
}
|
||
|
ArrayBuilder& operator=(decltype(nullptr)) {
|
||
|
dispose();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <typename... Params>
|
||
|
T& add(Params&&... params) {
|
||
|
KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder.");
|
||
|
ctor(*pos, kj::fwd<Params>(params)...);
|
||
|
return *pos++;
|
||
|
}
|
||
|
|
||
|
template <typename Container>
|
||
|
void addAll(Container&& container) {
|
||
|
addAll<decltype(container.begin()), !isReference<Container>()>(
|
||
|
container.begin(), container.end());
|
||
|
}
|
||
|
|
||
|
template <typename Iterator, bool move = false>
|
||
|
void addAll(Iterator start, Iterator end);
|
||
|
|
||
|
void removeLast() {
|
||
|
KJ_IREQUIRE(pos > ptr, "No elements present to remove.");
|
||
|
kj::dtor(*--pos);
|
||
|
}
|
||
|
|
||
|
void truncate(size_t size) {
|
||
|
KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand");
|
||
|
|
||
|
T* target = ptr + size;
|
||
|
if (__has_trivial_destructor(T)) {
|
||
|
pos = target;
|
||
|
} else {
|
||
|
while (pos > target) {
|
||
|
kj::dtor(*--pos);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void resize(size_t size) {
|
||
|
KJ_IREQUIRE(size <= capacity(), "can't resize past capacity");
|
||
|
|
||
|
T* target = ptr + size;
|
||
|
if (target > pos) {
|
||
|
// expand
|
||
|
if (__has_trivial_constructor(T)) {
|
||
|
pos = target;
|
||
|
} else {
|
||
|
while (pos < target) {
|
||
|
kj::ctor(*pos++);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// truncate
|
||
|
if (__has_trivial_destructor(T)) {
|
||
|
pos = target;
|
||
|
} else {
|
||
|
while (pos > target) {
|
||
|
kj::dtor(*--pos);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Array<T> finish() {
|
||
|
// We could safely remove this check if we assume that the disposer implementation doesn't
|
||
|
// need to know the original capacity, as is thes case with HeapArrayDisposer since it uses
|
||
|
// operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity
|
||
|
// in a prefix. But that would make it hard to write cleverer heap allocators, and anyway this
|
||
|
// check might catch bugs. Probably people should use Vector if they want to build arrays
|
||
|
// without knowing the final size in advance.
|
||
|
KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely.");
|
||
|
Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer);
|
||
|
ptr = nullptr;
|
||
|
pos = nullptr;
|
||
|
endPtr = nullptr;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
inline bool isFull() const {
|
||
|
return pos == endPtr;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
T* ptr;
|
||
|
RemoveConst<T>* pos;
|
||
|
T* endPtr;
|
||
|
const ArrayDisposer* disposer;
|
||
|
|
||
|
inline void dispose() {
|
||
|
// Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
|
||
|
// dispose again.
|
||
|
T* ptrCopy = ptr;
|
||
|
T* posCopy = pos;
|
||
|
T* endCopy = endPtr;
|
||
|
if (ptrCopy != nullptr) {
|
||
|
ptr = nullptr;
|
||
|
pos = nullptr;
|
||
|
endPtr = nullptr;
|
||
|
disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
inline ArrayBuilder<T> heapArrayBuilder(size_t size) {
|
||
|
// Like `heapArray<T>()` but does not default-construct the elements. You must construct them
|
||
|
// manually by calling `add()`.
|
||
|
|
||
|
return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size),
|
||
|
size, _::HeapArrayDisposer::instance);
|
||
|
}
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Inline Arrays
|
||
|
|
||
|
template <typename T, size_t fixedSize>
|
||
|
class FixedArray {
|
||
|
// A fixed-width array whose storage is allocated inline rather than on the heap.
|
||
|
|
||
|
public:
|
||
|
inline size_t size() const { return fixedSize; }
|
||
|
inline T* begin() { return content; }
|
||
|
inline T* end() { return content + fixedSize; }
|
||
|
inline const T* begin() const { return content; }
|
||
|
inline const T* end() const { return content + fixedSize; }
|
||
|
|
||
|
inline operator ArrayPtr<T>() {
|
||
|
return arrayPtr(content, fixedSize);
|
||
|
}
|
||
|
inline operator ArrayPtr<const T>() const {
|
||
|
return arrayPtr(content, fixedSize);
|
||
|
}
|
||
|
|
||
|
inline T& operator[](size_t index) { return content[index]; }
|
||
|
inline const T& operator[](size_t index) const { return content[index]; }
|
||
|
|
||
|
private:
|
||
|
T content[fixedSize];
|
||
|
};
|
||
|
|
||
|
template <typename T, size_t fixedSize>
|
||
|
class CappedArray {
|
||
|
// Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit
|
||
|
// specified by the template parameter.
|
||
|
//
|
||
|
// TODO(someday): Don't construct elements past currentSize?
|
||
|
|
||
|
public:
|
||
|
inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {}
|
||
|
inline explicit constexpr CappedArray(size_t s): currentSize(s) {}
|
||
|
|
||
|
inline size_t size() const { return currentSize; }
|
||
|
inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; }
|
||
|
inline T* begin() { return content; }
|
||
|
inline T* end() { return content + currentSize; }
|
||
|
inline const T* begin() const { return content; }
|
||
|
inline const T* end() const { return content + currentSize; }
|
||
|
|
||
|
inline operator ArrayPtr<T>() {
|
||
|
return arrayPtr(content, currentSize);
|
||
|
}
|
||
|
inline operator ArrayPtr<const T>() const {
|
||
|
return arrayPtr(content, currentSize);
|
||
|
}
|
||
|
|
||
|
inline T& operator[](size_t index) { return content[index]; }
|
||
|
inline const T& operator[](size_t index) const { return content[index]; }
|
||
|
|
||
|
private:
|
||
|
size_t currentSize;
|
||
|
T content[fixedSize];
|
||
|
};
|
||
|
|
||
|
// =======================================================================================
|
||
|
// KJ_MAP
|
||
|
|
||
|
#define KJ_MAP(elementName, array) \
|
||
|
::kj::_::Mapper<KJ_DECLTYPE_REF(array)>(array) * \
|
||
|
[&](typename ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>::Element elementName)
|
||
|
// Applies some function to every element of an array, returning an Array of the results, with
|
||
|
// nice syntax. Example:
|
||
|
//
|
||
|
// StringPtr foo = "abcd";
|
||
|
// Array<char> bar = KJ_MAP(c, foo) -> char { return c + 1; };
|
||
|
// KJ_ASSERT(str(bar) == "bcde");
|
||
|
|
||
|
namespace _ { // private
|
||
|
|
||
|
template <typename T>
|
||
|
struct Mapper {
|
||
|
T array;
|
||
|
Mapper(T&& array): array(kj::fwd<T>(array)) {}
|
||
|
template <typename Func>
|
||
|
auto operator*(Func&& func) -> Array<decltype(func(*array.begin()))> {
|
||
|
auto builder = heapArrayBuilder<decltype(func(*array.begin()))>(array.size());
|
||
|
for (auto iter = array.begin(); iter != array.end(); ++iter) {
|
||
|
builder.add(func(*iter));
|
||
|
}
|
||
|
return builder.finish();
|
||
|
}
|
||
|
typedef decltype(*kj::instance<T>().begin()) Element;
|
||
|
};
|
||
|
|
||
|
template <typename T, size_t s>
|
||
|
struct Mapper<T(&)[s]> {
|
||
|
T* array;
|
||
|
Mapper(T* array): array(array) {}
|
||
|
template <typename Func>
|
||
|
auto operator*(Func&& func) -> Array<decltype(func(*array))> {
|
||
|
auto builder = heapArrayBuilder<decltype(func(*array))>(s);
|
||
|
for (size_t i = 0; i < s; i++) {
|
||
|
builder.add(func(array[i]));
|
||
|
}
|
||
|
return builder.finish();
|
||
|
}
|
||
|
typedef decltype(*array)& Element;
|
||
|
};
|
||
|
|
||
|
} // namespace _ (private)
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Inline implementation details
|
||
|
|
||
|
template <typename T>
|
||
|
struct ArrayDisposer::Dispose_<T, true> {
|
||
|
static void dispose(T* firstElement, size_t elementCount, size_t capacity,
|
||
|
const ArrayDisposer& disposer) {
|
||
|
disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
|
||
|
sizeof(T), elementCount, capacity, nullptr);
|
||
|
}
|
||
|
};
|
||
|
template <typename T>
|
||
|
struct ArrayDisposer::Dispose_<T, false> {
|
||
|
static void destruct(void* ptr) {
|
||
|
kj::dtor(*reinterpret_cast<T*>(ptr));
|
||
|
}
|
||
|
|
||
|
static void dispose(T* firstElement, size_t elementCount, size_t capacity,
|
||
|
const ArrayDisposer& disposer) {
|
||
|
disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const {
|
||
|
Dispose_<T>::dispose(firstElement, elementCount, capacity, *this);
|
||
|
}
|
||
|
|
||
|
namespace _ { // private
|
||
|
|
||
|
template <typename T>
|
||
|
struct HeapArrayDisposer::Allocate_<T, true, true> {
|
||
|
static T* allocate(size_t elementCount, size_t capacity) {
|
||
|
return reinterpret_cast<T*>(allocateImpl(
|
||
|
sizeof(T), elementCount, capacity, nullptr, nullptr));
|
||
|
}
|
||
|
};
|
||
|
template <typename T>
|
||
|
struct HeapArrayDisposer::Allocate_<T, false, true> {
|
||
|
static void construct(void* ptr) {
|
||
|
kj::ctor(*reinterpret_cast<T*>(ptr));
|
||
|
}
|
||
|
static T* allocate(size_t elementCount, size_t capacity) {
|
||
|
return reinterpret_cast<T*>(allocateImpl(
|
||
|
sizeof(T), elementCount, capacity, &construct, nullptr));
|
||
|
}
|
||
|
};
|
||
|
template <typename T>
|
||
|
struct HeapArrayDisposer::Allocate_<T, false, false> {
|
||
|
static void construct(void* ptr) {
|
||
|
kj::ctor(*reinterpret_cast<T*>(ptr));
|
||
|
}
|
||
|
static void destruct(void* ptr) {
|
||
|
kj::dtor(*reinterpret_cast<T*>(ptr));
|
||
|
}
|
||
|
static T* allocate(size_t elementCount, size_t capacity) {
|
||
|
return reinterpret_cast<T*>(allocateImpl(
|
||
|
sizeof(T), elementCount, capacity, &construct, &destruct));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
T* HeapArrayDisposer::allocate(size_t count) {
|
||
|
return Allocate_<T>::allocate(count, count);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
T* HeapArrayDisposer::allocateUninitialized(size_t count) {
|
||
|
return Allocate_<T, true, true>::allocate(0, count);
|
||
|
}
|
||
|
|
||
|
template <typename Element, typename Iterator, bool move, bool = canMemcpy<Element>()>
|
||
|
struct CopyConstructArray_;
|
||
|
|
||
|
template <typename T, bool move>
|
||
|
struct CopyConstructArray_<T, T*, move, true> {
|
||
|
static inline T* apply(T* __restrict__ pos, T* start, T* end) {
|
||
|
memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start));
|
||
|
return pos + (end - start);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
struct CopyConstructArray_<T, const T*, false, true> {
|
||
|
static inline T* apply(T* __restrict__ pos, const T* start, const T* end) {
|
||
|
memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start));
|
||
|
return pos + (end - start);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T, typename Iterator, bool move>
|
||
|
struct CopyConstructArray_<T, Iterator, move, true> {
|
||
|
static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
|
||
|
// Since both the copy constructor and assignment operator are trivial, we know that assignment
|
||
|
// is equivalent to copy-constructing. So we can make this case somewhat easier for the
|
||
|
// compiler to optimize.
|
||
|
while (start != end) {
|
||
|
*pos++ = *start++;
|
||
|
}
|
||
|
return pos;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T, typename Iterator>
|
||
|
struct CopyConstructArray_<T, Iterator, false, false> {
|
||
|
struct ExceptionGuard {
|
||
|
T* start;
|
||
|
T* pos;
|
||
|
inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
|
||
|
~ExceptionGuard() noexcept(false) {
|
||
|
while (pos > start) {
|
||
|
dtor(*--pos);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
|
||
|
// Verify that T can be *implicitly* constructed from the source values.
|
||
|
if (false) implicitCast<T>(*start);
|
||
|
|
||
|
if (noexcept(T(*start))) {
|
||
|
while (start != end) {
|
||
|
ctor(*pos++, *start++);
|
||
|
}
|
||
|
return pos;
|
||
|
} else {
|
||
|
// Crap. This is complicated.
|
||
|
ExceptionGuard guard(pos);
|
||
|
while (start != end) {
|
||
|
ctor(*guard.pos, *start++);
|
||
|
++guard.pos;
|
||
|
}
|
||
|
guard.start = guard.pos;
|
||
|
return guard.pos;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T, typename Iterator>
|
||
|
struct CopyConstructArray_<T, Iterator, true, false> {
|
||
|
// Actually move-construct.
|
||
|
|
||
|
struct ExceptionGuard {
|
||
|
T* start;
|
||
|
T* pos;
|
||
|
inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
|
||
|
~ExceptionGuard() noexcept(false) {
|
||
|
while (pos > start) {
|
||
|
dtor(*--pos);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
|
||
|
// Verify that T can be *implicitly* constructed from the source values.
|
||
|
if (false) implicitCast<T>(kj::mv(*start));
|
||
|
|
||
|
if (noexcept(T(kj::mv(*start)))) {
|
||
|
while (start != end) {
|
||
|
ctor(*pos++, kj::mv(*start++));
|
||
|
}
|
||
|
return pos;
|
||
|
} else {
|
||
|
// Crap. This is complicated.
|
||
|
ExceptionGuard guard(pos);
|
||
|
while (start != end) {
|
||
|
ctor(*guard.pos, kj::mv(*start++));
|
||
|
++guard.pos;
|
||
|
}
|
||
|
guard.start = guard.pos;
|
||
|
return guard.pos;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace _ (private)
|
||
|
|
||
|
template <typename T>
|
||
|
template <typename Iterator, bool move>
|
||
|
void ArrayBuilder<T>::addAll(Iterator start, Iterator end) {
|
||
|
pos = _::CopyConstructArray_<RemoveConst<T>, Decay<Iterator>, move>::apply(pos, start, end);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
Array<T> heapArray(const T* content, size_t size) {
|
||
|
ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
|
||
|
builder.addAll(content, content + size);
|
||
|
return builder.finish();
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
Array<T> heapArray(T* content, size_t size) {
|
||
|
ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
|
||
|
builder.addAll(content, content + size);
|
||
|
return builder.finish();
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
Array<T> heapArray(ArrayPtr<T> content) {
|
||
|
ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
|
||
|
builder.addAll(content);
|
||
|
return builder.finish();
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
Array<T> heapArray(ArrayPtr<const T> content) {
|
||
|
ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
|
||
|
builder.addAll(content);
|
||
|
return builder.finish();
|
||
|
}
|
||
|
|
||
|
template <typename T, typename Iterator> Array<T>
|
||
|
heapArray(Iterator begin, Iterator end) {
|
||
|
ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin);
|
||
|
builder.addAll(begin, end);
|
||
|
return builder.finish();
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline Array<T> heapArray(std::initializer_list<T> init) {
|
||
|
return heapArray<T>(init.begin(), init.end());
|
||
|
}
|
||
|
|
||
|
} // namespace kj
|
||
|
|
||
|
#endif // KJ_ARRAY_H_
|