You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1401 lines
50 KiB
1401 lines
50 KiB
7 years ago
|
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
||
|
// Licensed under the MIT License:
|
||
|
//
|
||
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
// of this software and associated documentation files (the "Software"), to deal
|
||
|
// in the Software without restriction, including without limitation the rights
|
||
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
// copies of the Software, and to permit persons to whom the Software is
|
||
|
// furnished to do so, subject to the following conditions:
|
||
|
//
|
||
|
// The above copyright notice and this permission notice shall be included in
|
||
|
// all copies or substantial portions of the Software.
|
||
|
//
|
||
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
// THE SOFTWARE.
|
||
|
|
||
|
// Header that should be #included by everyone.
|
||
|
//
|
||
|
// This defines very simple utilities that are widely applicable.
|
||
|
|
||
|
#ifndef KJ_COMMON_H_
|
||
|
#define KJ_COMMON_H_
|
||
|
|
||
|
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
||
|
#pragma GCC system_header
|
||
|
#endif
|
||
|
|
||
|
#ifndef KJ_NO_COMPILER_CHECK
|
||
|
#if __cplusplus < 201103L && !__CDT_PARSER__ && !_MSC_VER
|
||
|
#error "This code requires C++11. Either your compiler does not support it or it is not enabled."
|
||
|
#ifdef __GNUC__
|
||
|
// Compiler claims compatibility with GCC, so presumably supports -std.
|
||
|
#error "Pass -std=c++11 on the compiler command line to enable C++11."
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#ifdef __GNUC__
|
||
|
#if __clang__
|
||
|
#if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 2)
|
||
|
#warning "This library requires at least Clang 3.2."
|
||
|
#elif defined(__apple_build_version__) && __apple_build_version__ <= 4250028
|
||
|
#warning "This library requires at least Clang 3.2. XCode 4.6's Clang, which claims to be "\
|
||
|
"version 4.2 (wat?), is actually built from some random SVN revision between 3.1 "\
|
||
|
"and 3.2. Unfortunately, it is insufficient for compiling this library. You can "\
|
||
|
"download the real Clang 3.2 (or newer) from the Clang web site. Step-by-step "\
|
||
|
"instructions can be found in Cap'n Proto's documentation: "\
|
||
|
"http://kentonv.github.io/capnproto/install.html#clang_32_on_mac_osx"
|
||
|
#elif __cplusplus >= 201103L && !__has_include(<initializer_list>)
|
||
|
#warning "Your compiler supports C++11 but your C++ standard library does not. If your "\
|
||
|
"system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\
|
||
|
"-stdlib=libc++ to your CXXFLAGS."
|
||
|
#endif
|
||
|
#else
|
||
|
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7)
|
||
|
#warning "This library requires at least GCC 4.7."
|
||
|
#endif
|
||
|
#endif
|
||
|
#elif defined(_MSC_VER)
|
||
|
#if _MSC_VER < 1900
|
||
|
#error "You need Visual Studio 2015 or better to compile this code."
|
||
|
#endif
|
||
|
#else
|
||
|
#warning "I don't recognize your compiler. As of this writing, Clang and GCC are the only "\
|
||
|
"known compilers with enough C++11 support for this library. "\
|
||
|
"#define KJ_NO_COMPILER_CHECK to make this warning go away."
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#include <stddef.h>
|
||
|
#include <initializer_list>
|
||
|
|
||
|
#if __linux__ && __cplusplus > 201200L
|
||
|
// Hack around stdlib bug with C++14 that exists on some Linux systems.
|
||
|
// Apparently in this mode the C library decides not to define gets() but the C++ library still
|
||
|
// tries to import it into the std namespace. This bug has been fixed at the source but is still
|
||
|
// widely present in the wild e.g. on Ubuntu 14.04.
|
||
|
#undef _GLIBCXX_HAVE_GETS
|
||
|
#endif
|
||
|
|
||
|
#if defined(_MSC_VER)
|
||
|
#ifndef NOMINMAX
|
||
|
#define NOMINMAX 1
|
||
|
#endif
|
||
|
#include <intrin.h> // __popcnt
|
||
|
#endif
|
||
|
|
||
|
// =======================================================================================
|
||
|
|
||
|
namespace kj {
|
||
|
|
||
|
typedef unsigned int uint;
|
||
|
typedef unsigned char byte;
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Common macros, especially for common yet compiler-specific features.
|
||
|
|
||
|
// Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific
|
||
|
// evidence to the contrary. Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly
|
||
|
// to override these checks.
|
||
|
#ifdef __GNUC__
|
||
|
#if !defined(KJ_NO_RTTI) && !__GXX_RTTI
|
||
|
#define KJ_NO_RTTI 1
|
||
|
#endif
|
||
|
#if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS
|
||
|
#define KJ_NO_EXCEPTIONS 1
|
||
|
#endif
|
||
|
#elif defined(_MSC_VER)
|
||
|
#if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI)
|
||
|
#define KJ_NO_RTTI 1
|
||
|
#endif
|
||
|
#if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND)
|
||
|
#define KJ_NO_EXCEPTIONS 1
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG)
|
||
|
// Heuristically decide whether to enable debug mode. If DEBUG or NDEBUG is defined, use that.
|
||
|
// Otherwise, fall back to checking whether optimization is enabled.
|
||
|
#if defined(DEBUG) || defined(_DEBUG)
|
||
|
#define KJ_DEBUG
|
||
|
#elif defined(NDEBUG)
|
||
|
#define KJ_NDEBUG
|
||
|
#elif __OPTIMIZE__
|
||
|
#define KJ_NDEBUG
|
||
|
#else
|
||
|
#define KJ_DEBUG
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#define KJ_DISALLOW_COPY(classname) \
|
||
|
classname(const classname&) = delete; \
|
||
|
classname& operator=(const classname&) = delete
|
||
|
// Deletes the implicit copy constructor and assignment operator.
|
||
|
|
||
|
#ifdef __GNUC__
|
||
|
#define KJ_LIKELY(condition) __builtin_expect(condition, true)
|
||
|
#define KJ_UNLIKELY(condition) __builtin_expect(condition, false)
|
||
|
// Branch prediction macros. Evaluates to the condition given, but also tells the compiler that we
|
||
|
// expect the condition to be true/false enough of the time that it's worth hard-coding branch
|
||
|
// prediction.
|
||
|
#else
|
||
|
#define KJ_LIKELY(condition) (condition)
|
||
|
#define KJ_UNLIKELY(condition) (condition)
|
||
|
#endif
|
||
|
|
||
|
#if defined(KJ_DEBUG) || __NO_INLINE__
|
||
|
#define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__
|
||
|
// Don't force inline in debug mode.
|
||
|
#else
|
||
|
#if defined(_MSC_VER)
|
||
|
#define KJ_ALWAYS_INLINE(...) __forceinline __VA_ARGS__
|
||
|
#else
|
||
|
#define KJ_ALWAYS_INLINE(...) inline __VA_ARGS__ __attribute__((always_inline))
|
||
|
#endif
|
||
|
// Force a function to always be inlined. Apply only to the prototype, not to the definition.
|
||
|
#endif
|
||
|
|
||
|
#if defined(_MSC_VER)
|
||
|
#define KJ_NOINLINE __declspec(noinline)
|
||
|
#else
|
||
|
#define KJ_NOINLINE __attribute__((noinline))
|
||
|
#endif
|
||
|
|
||
|
#if defined(_MSC_VER)
|
||
|
#define KJ_NORETURN(prototype) __declspec(noreturn) prototype
|
||
|
#define KJ_UNUSED
|
||
|
#define KJ_WARN_UNUSED_RESULT
|
||
|
// TODO(msvc): KJ_WARN_UNUSED_RESULT can use _Check_return_ on MSVC, but it's a prefix, so
|
||
|
// wrapping the whole prototype is needed. http://msdn.microsoft.com/en-us/library/jj159529.aspx
|
||
|
// Similarly, KJ_UNUSED could use __pragma(warning(suppress:...)), but again that's a prefix.
|
||
|
#else
|
||
|
#define KJ_NORETURN(prototype) prototype __attribute__((noreturn))
|
||
|
#define KJ_UNUSED __attribute__((unused))
|
||
|
#define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result))
|
||
|
#endif
|
||
|
|
||
|
#if __clang__
|
||
|
#define KJ_UNUSED_MEMBER __attribute__((unused))
|
||
|
// Inhibits "unused" warning for member variables. Only Clang produces such a warning, while GCC
|
||
|
// complains if the attribute is set on members.
|
||
|
#else
|
||
|
#define KJ_UNUSED_MEMBER
|
||
|
#endif
|
||
|
|
||
|
#if __clang__
|
||
|
#define KJ_DEPRECATED(reason) \
|
||
|
__attribute__((deprecated(reason)))
|
||
|
#define KJ_UNAVAILABLE(reason) \
|
||
|
__attribute__((unavailable(reason)))
|
||
|
#elif __GNUC__
|
||
|
#define KJ_DEPRECATED(reason) \
|
||
|
__attribute__((deprecated))
|
||
|
#define KJ_UNAVAILABLE(reason)
|
||
|
#else
|
||
|
#define KJ_DEPRECATED(reason)
|
||
|
#define KJ_UNAVAILABLE(reason)
|
||
|
// TODO(msvc): Again, here, MSVC prefers a prefix, __declspec(deprecated).
|
||
|
#endif
|
||
|
|
||
|
namespace _ { // private
|
||
|
|
||
|
KJ_NORETURN(void inlineRequireFailure(
|
||
|
const char* file, int line, const char* expectation, const char* macroArgs,
|
||
|
const char* message = nullptr));
|
||
|
|
||
|
KJ_NORETURN(void unreachable());
|
||
|
|
||
|
} // namespace _ (private)
|
||
|
|
||
|
#ifdef KJ_DEBUG
|
||
|
#if _MSC_VER
|
||
|
#define KJ_IREQUIRE(condition, ...) \
|
||
|
if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
|
||
|
__FILE__, __LINE__, #condition, "" #__VA_ARGS__, __VA_ARGS__)
|
||
|
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to
|
||
|
// check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that
|
||
|
// it will be enabled depending on whether the application is compiled in debug mode rather than
|
||
|
// whether libkj is.
|
||
|
#else
|
||
|
#define KJ_IREQUIRE(condition, ...) \
|
||
|
if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
|
||
|
__FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
|
||
|
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to
|
||
|
// check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that
|
||
|
// it will be enabled depending on whether the application is compiled in debug mode rather than
|
||
|
// whether libkj is.
|
||
|
#endif
|
||
|
#else
|
||
|
#define KJ_IREQUIRE(condition, ...)
|
||
|
#endif
|
||
|
|
||
|
#define KJ_IASSERT KJ_IREQUIRE
|
||
|
|
||
|
#define KJ_UNREACHABLE ::kj::_::unreachable();
|
||
|
// Put this on code paths that cannot be reached to suppress compiler warnings about missing
|
||
|
// returns.
|
||
|
|
||
|
#if __clang__
|
||
|
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT
|
||
|
#else
|
||
|
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE
|
||
|
#endif
|
||
|
|
||
|
// #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack)
|
||
|
//
|
||
|
// Allocate an array, preferably on the stack, unless it is too big. On GCC this will use
|
||
|
// variable-sized arrays. For other compilers we could just use a fixed-size array. `minStack`
|
||
|
// is the stack array size to use if variable-width arrays are not supported. `maxStack` is the
|
||
|
// maximum stack array size if variable-width arrays *are* supported.
|
||
|
#if __GNUC__ && !__clang__
|
||
|
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
|
||
|
size_t name##_size = (size); \
|
||
|
bool name##_isOnStack = name##_size <= (maxStack); \
|
||
|
type name##_stack[name##_isOnStack ? size : 0]; \
|
||
|
::kj::Array<type> name##_heap = name##_isOnStack ? \
|
||
|
nullptr : kj::heapArray<type>(name##_size); \
|
||
|
::kj::ArrayPtr<type> name = name##_isOnStack ? \
|
||
|
kj::arrayPtr(name##_stack, name##_size) : name##_heap
|
||
|
#else
|
||
|
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
|
||
|
size_t name##_size = (size); \
|
||
|
bool name##_isOnStack = name##_size <= (minStack); \
|
||
|
type name##_stack[minStack]; \
|
||
|
::kj::Array<type> name##_heap = name##_isOnStack ? \
|
||
|
nullptr : kj::heapArray<type>(name##_size); \
|
||
|
::kj::ArrayPtr<type> name = name##_isOnStack ? \
|
||
|
kj::arrayPtr(name##_stack, name##_size) : name##_heap
|
||
|
#endif
|
||
|
|
||
|
#define KJ_CONCAT_(x, y) x##y
|
||
|
#define KJ_CONCAT(x, y) KJ_CONCAT_(x, y)
|
||
|
#define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__)
|
||
|
// Create a unique identifier name. We use concatenate __LINE__ rather than __COUNTER__ so that
|
||
|
// the name can be used multiple times in the same macro.
|
||
|
|
||
|
#if _MSC_VER
|
||
|
|
||
|
#define KJ_CONSTEXPR(...) __VA_ARGS__
|
||
|
// Use in cases where MSVC barfs on constexpr. A replacement keyword (e.g. "const") can be
|
||
|
// provided, or just leave blank to remove the keyword entirely.
|
||
|
//
|
||
|
// TODO(msvc): Remove this hack once MSVC fully supports constexpr.
|
||
|
|
||
|
#ifndef __restrict__
|
||
|
#define __restrict__ __restrict
|
||
|
// TODO(msvc): Would it be better to define a KJ_RESTRICT macro?
|
||
|
#endif
|
||
|
|
||
|
#pragma warning(disable: 4521 4522)
|
||
|
// This warning complains when there are two copy constructors, one for a const reference and
|
||
|
// one for a non-const reference. It is often quite necessary to do this in wrapper templates,
|
||
|
// therefore this warning is dumb and we disable it.
|
||
|
|
||
|
#pragma warning(disable: 4458)
|
||
|
// Warns when a parameter name shadows a class member. Unfortunately my code does this a lot,
|
||
|
// since I don't use a special name format for members.
|
||
|
|
||
|
#else // _MSC_VER
|
||
|
#define KJ_CONSTEXPR(...) constexpr
|
||
|
#endif
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Template metaprogramming helpers.
|
||
|
|
||
|
template <typename T> struct NoInfer_ { typedef T Type; };
|
||
|
template <typename T> using NoInfer = typename NoInfer_<T>::Type;
|
||
|
// Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of
|
||
|
// the type based on the parameter value.
|
||
|
|
||
|
template <typename T> struct RemoveConst_ { typedef T Type; };
|
||
|
template <typename T> struct RemoveConst_<const T> { typedef T Type; };
|
||
|
template <typename T> using RemoveConst = typename RemoveConst_<T>::Type;
|
||
|
|
||
|
template <typename> struct IsLvalueReference_ { static constexpr bool value = false; };
|
||
|
template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; };
|
||
|
template <typename T>
|
||
|
inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; }
|
||
|
|
||
|
template <typename T> struct Decay_ { typedef T Type; };
|
||
|
template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; };
|
||
|
template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; };
|
||
|
template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; };
|
||
|
template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; };
|
||
|
template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; };
|
||
|
template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; };
|
||
|
template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; };
|
||
|
template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; };
|
||
|
template <typename T> using Decay = typename Decay_<T>::Type;
|
||
|
|
||
|
template <bool b> struct EnableIf_;
|
||
|
template <> struct EnableIf_<true> { typedef void Type; };
|
||
|
template <bool b> using EnableIf = typename EnableIf_<b>::Type;
|
||
|
// Use like:
|
||
|
//
|
||
|
// template <typename T, typename = EnableIf<isValid<T>()>
|
||
|
// void func(T&& t);
|
||
|
|
||
|
template <typename...> struct VoidSfinae_ { using Type = void; };
|
||
|
template <typename... Ts> using VoidSfinae = typename VoidSfinae_<Ts...>::Type;
|
||
|
// Note: VoidSfinae is std::void_t from C++17.
|
||
|
|
||
|
template <typename T>
|
||
|
T instance() noexcept;
|
||
|
// Like std::declval, but doesn't transform T into an rvalue reference. If you want that, specify
|
||
|
// instance<T&&>().
|
||
|
|
||
|
struct DisallowConstCopy {
|
||
|
// Inherit from this, or declare a member variable of this type, to prevent the class from being
|
||
|
// copyable from a const reference -- instead, it will only be copyable from non-const references.
|
||
|
// This is useful for enforcing transitive constness of contained pointers.
|
||
|
//
|
||
|
// For example, say you have a type T which contains a pointer. T has non-const methods which
|
||
|
// modify the value at that pointer, but T's const methods are designed to allow reading only.
|
||
|
// Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and
|
||
|
// then use it to modify the pointed-to value. However, if T inherits DisallowConstCopy, then
|
||
|
// callers will only be able to copy non-const instances of T. Ideally, there is some
|
||
|
// parallel type ImmutableT which is like a version of T that only has const methods, and can
|
||
|
// be copied from a const T.
|
||
|
//
|
||
|
// Note that due to C++ rules about implicit copy constructors and assignment operators, any
|
||
|
// type that contains or inherits from a type that disallows const copies will also automatically
|
||
|
// disallow const copies. Hey, cool, that's exactly what we want.
|
||
|
|
||
|
#if CAPNP_DEBUG_TYPES
|
||
|
// Alas! Declaring a defaulted non-const copy constructor tickles a bug which causes GCC and
|
||
|
// Clang to disagree on ABI, using different calling conventions to pass this type, leading to
|
||
|
// immediate segfaults. See:
|
||
|
// https://bugs.llvm.org/show_bug.cgi?id=23764
|
||
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58074
|
||
|
//
|
||
|
// Because of this, we can't use this technique. We guard it by CAPNP_DEBUG_TYPES so that it
|
||
|
// still applies to the Cap'n Proto developers during internal testing.
|
||
|
|
||
|
DisallowConstCopy() = default;
|
||
|
DisallowConstCopy(DisallowConstCopy&) = default;
|
||
|
DisallowConstCopy(DisallowConstCopy&&) = default;
|
||
|
DisallowConstCopy& operator=(DisallowConstCopy&) = default;
|
||
|
DisallowConstCopy& operator=(DisallowConstCopy&&) = default;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
#if _MSC_VER
|
||
|
|
||
|
#define KJ_CPCAP(obj) obj=::kj::cp(obj)
|
||
|
// TODO(msvc): MSVC refuses to invoke non-const versions of copy constructors in by-value lambda
|
||
|
// captures. Wrap your captured object in this macro to force the compiler to perform a copy.
|
||
|
// Example:
|
||
|
//
|
||
|
// struct Foo: DisallowConstCopy {};
|
||
|
// Foo foo;
|
||
|
// auto lambda = [KJ_CPCAP(foo)] {};
|
||
|
|
||
|
#else
|
||
|
|
||
|
#define KJ_CPCAP(obj) obj
|
||
|
// Clang and gcc both already perform copy capturing correctly with non-const copy constructors.
|
||
|
|
||
|
#endif
|
||
|
|
||
|
template <typename T>
|
||
|
struct DisallowConstCopyIfNotConst: public DisallowConstCopy {
|
||
|
// Inherit from this when implementing a template that contains a pointer to T and which should
|
||
|
// enforce transitive constness. If T is a const type, this has no effect. Otherwise, it is
|
||
|
// an alias for DisallowConstCopy.
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
struct DisallowConstCopyIfNotConst<const T> {};
|
||
|
|
||
|
template <typename T> struct IsConst_ { static constexpr bool value = false; };
|
||
|
template <typename T> struct IsConst_<const T> { static constexpr bool value = true; };
|
||
|
template <typename T> constexpr bool isConst() { return IsConst_<T>::value; }
|
||
|
|
||
|
template <typename T> struct EnableIfNotConst_ { typedef T Type; };
|
||
|
template <typename T> struct EnableIfNotConst_<const T>;
|
||
|
template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type;
|
||
|
|
||
|
template <typename T> struct EnableIfConst_;
|
||
|
template <typename T> struct EnableIfConst_<const T> { typedef T Type; };
|
||
|
template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type;
|
||
|
|
||
|
template <typename T> struct RemoveConstOrDisable_ { struct Type; };
|
||
|
template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; };
|
||
|
template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type;
|
||
|
|
||
|
template <typename T> struct IsReference_ { static constexpr bool value = false; };
|
||
|
template <typename T> struct IsReference_<T&> { static constexpr bool value = true; };
|
||
|
template <typename T> constexpr bool isReference() { return IsReference_<T>::value; }
|
||
|
|
||
|
template <typename From, typename To>
|
||
|
struct PropagateConst_ { typedef To Type; };
|
||
|
template <typename From, typename To>
|
||
|
struct PropagateConst_<const From, To> { typedef const To Type; };
|
||
|
template <typename From, typename To>
|
||
|
using PropagateConst = typename PropagateConst_<From, To>::Type;
|
||
|
|
||
|
namespace _ { // private
|
||
|
|
||
|
template <typename T>
|
||
|
T refIfLvalue(T&&);
|
||
|
|
||
|
} // namespace _ (private)
|
||
|
|
||
|
#define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp))
|
||
|
// Like decltype(exp), but if exp is an lvalue, produces a reference type.
|
||
|
//
|
||
|
// int i;
|
||
|
// decltype(i) i1(i); // i1 has type int.
|
||
|
// KJ_DECLTYPE_REF(i + 1) i2(i + 1); // i2 has type int.
|
||
|
// KJ_DECLTYPE_REF(i) i3(i); // i3 has type int&.
|
||
|
// KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i)); // i4 has type int.
|
||
|
|
||
|
template <typename T>
|
||
|
struct CanConvert_ {
|
||
|
static int sfinae(T);
|
||
|
static bool sfinae(...);
|
||
|
};
|
||
|
|
||
|
template <typename T, typename U>
|
||
|
constexpr bool canConvert() {
|
||
|
return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int);
|
||
|
}
|
||
|
|
||
|
#if __GNUC__ && !__clang__ && __GNUC__ < 5
|
||
|
template <typename T>
|
||
|
constexpr bool canMemcpy() {
|
||
|
// Returns true if T can be copied using memcpy instead of using the copy constructor or
|
||
|
// assignment operator.
|
||
|
|
||
|
// GCC 4 does not have __is_trivially_constructible and friends, and there doesn't seem to be
|
||
|
// any reliable alternative. __has_trivial_copy() and __has_trivial_assign() return the right
|
||
|
// thing at one point but later on they changed such that a deleted copy constructor was
|
||
|
// considered "trivial" (apparently technically correct, though useless). So, on GCC 4 we give up
|
||
|
// and assume we can't memcpy() at all, and must explicitly copy-construct everything.
|
||
|
return false;
|
||
|
}
|
||
|
#define KJ_ASSERT_CAN_MEMCPY(T)
|
||
|
#else
|
||
|
template <typename T>
|
||
|
constexpr bool canMemcpy() {
|
||
|
// Returns true if T can be copied using memcpy instead of using the copy constructor or
|
||
|
// assignment operator.
|
||
|
|
||
|
return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&);
|
||
|
}
|
||
|
#define KJ_ASSERT_CAN_MEMCPY(T) \
|
||
|
static_assert(kj::canMemcpy<T>(), "this code expects this type to be memcpy()-able");
|
||
|
#endif
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Equivalents to std::move() and std::forward(), since these are very commonly needed and the
|
||
|
// std header <utility> pulls in lots of other stuff.
|
||
|
//
|
||
|
// We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used
|
||
|
// that the cost of typing more letters outweighs the cost of being slightly harder to understand
|
||
|
// when first encountered.
|
||
|
|
||
|
template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); }
|
||
|
template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); }
|
||
|
|
||
|
template<typename T> constexpr T cp(T& t) noexcept { return t; }
|
||
|
template<typename T> constexpr T cp(const T& t) noexcept { return t; }
|
||
|
// Useful to force a copy, particularly to pass into a function that expects T&&.
|
||
|
|
||
|
template <typename T, typename U, bool takeT, bool uOK = true> struct ChooseType_;
|
||
|
template <typename T, typename U> struct ChooseType_<T, U, true, true> { typedef T Type; };
|
||
|
template <typename T, typename U> struct ChooseType_<T, U, true, false> { typedef T Type; };
|
||
|
template <typename T, typename U> struct ChooseType_<T, U, false, true> { typedef U Type; };
|
||
|
|
||
|
template <typename T, typename U>
|
||
|
using WiderType = typename ChooseType_<T, U, sizeof(T) >= sizeof(U)>::Type;
|
||
|
|
||
|
template <typename T, typename U>
|
||
|
inline constexpr auto min(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> {
|
||
|
return a < b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b);
|
||
|
}
|
||
|
|
||
|
template <typename T, typename U>
|
||
|
inline constexpr auto max(T&& a, U&& b) -> WiderType<Decay<T>, Decay<U>> {
|
||
|
return a > b ? WiderType<Decay<T>, Decay<U>>(a) : WiderType<Decay<T>, Decay<U>>(b);
|
||
|
}
|
||
|
|
||
|
template <typename T, size_t s>
|
||
|
inline constexpr size_t size(T (&arr)[s]) { return s; }
|
||
|
template <typename T>
|
||
|
inline constexpr size_t size(T&& arr) { return arr.size(); }
|
||
|
// Returns the size of the parameter, whether the parameter is a regular C array or a container
|
||
|
// with a `.size()` method.
|
||
|
|
||
|
class MaxValue_ {
|
||
|
private:
|
||
|
template <typename T>
|
||
|
inline constexpr T maxSigned() const {
|
||
|
return (1ull << (sizeof(T) * 8 - 1)) - 1;
|
||
|
}
|
||
|
template <typename T>
|
||
|
inline constexpr T maxUnsigned() const {
|
||
|
return ~static_cast<T>(0u);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
#define _kJ_HANDLE_TYPE(T) \
|
||
|
inline constexpr operator signed T() const { return MaxValue_::maxSigned < signed T>(); } \
|
||
|
inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); }
|
||
|
_kJ_HANDLE_TYPE(char)
|
||
|
_kJ_HANDLE_TYPE(short)
|
||
|
_kJ_HANDLE_TYPE(int)
|
||
|
_kJ_HANDLE_TYPE(long)
|
||
|
_kJ_HANDLE_TYPE(long long)
|
||
|
#undef _kJ_HANDLE_TYPE
|
||
|
|
||
|
inline constexpr operator char() const {
|
||
|
// `char` is different from both `signed char` and `unsigned char`, and may be signed or
|
||
|
// unsigned on different platforms. Ugh.
|
||
|
return char(-1) < 0 ? MaxValue_::maxSigned<char>()
|
||
|
: MaxValue_::maxUnsigned<char>();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class MinValue_ {
|
||
|
private:
|
||
|
template <typename T>
|
||
|
inline constexpr T minSigned() const {
|
||
|
return 1ull << (sizeof(T) * 8 - 1);
|
||
|
}
|
||
|
template <typename T>
|
||
|
inline constexpr T minUnsigned() const {
|
||
|
return 0u;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
#define _kJ_HANDLE_TYPE(T) \
|
||
|
inline constexpr operator signed T() const { return MinValue_::minSigned < signed T>(); } \
|
||
|
inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); }
|
||
|
_kJ_HANDLE_TYPE(char)
|
||
|
_kJ_HANDLE_TYPE(short)
|
||
|
_kJ_HANDLE_TYPE(int)
|
||
|
_kJ_HANDLE_TYPE(long)
|
||
|
_kJ_HANDLE_TYPE(long long)
|
||
|
#undef _kJ_HANDLE_TYPE
|
||
|
|
||
|
inline constexpr operator char() const {
|
||
|
// `char` is different from both `signed char` and `unsigned char`, and may be signed or
|
||
|
// unsigned on different platforms. Ugh.
|
||
|
return char(-1) < 0 ? MinValue_::minSigned<char>()
|
||
|
: MinValue_::minUnsigned<char>();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static KJ_CONSTEXPR(const) MaxValue_ maxValue = MaxValue_();
|
||
|
// A special constant which, when cast to an integer type, takes on the maximum possible value of
|
||
|
// that type. This is useful to use as e.g. a parameter to a function because it will be robust
|
||
|
// in the face of changes to the parameter's type.
|
||
|
//
|
||
|
// `char` is not supported, but `signed char` and `unsigned char` are.
|
||
|
|
||
|
static KJ_CONSTEXPR(const) MinValue_ minValue = MinValue_();
|
||
|
// A special constant which, when cast to an integer type, takes on the minimum possible value
|
||
|
// of that type. This is useful to use as e.g. a parameter to a function because it will be robust
|
||
|
// in the face of changes to the parameter's type.
|
||
|
//
|
||
|
// `char` is not supported, but `signed char` and `unsigned char` are.
|
||
|
|
||
|
template <typename T>
|
||
|
inline bool operator==(T t, MaxValue_) { return t == Decay<T>(maxValue); }
|
||
|
template <typename T>
|
||
|
inline bool operator==(T t, MinValue_) { return t == Decay<T>(minValue); }
|
||
|
|
||
|
template <uint bits>
|
||
|
inline constexpr unsigned long long maxValueForBits() {
|
||
|
// Get the maximum integer representable in the given number of bits.
|
||
|
|
||
|
// 1ull << 64 is unfortunately undefined.
|
||
|
return (bits == 64 ? 0 : (1ull << bits)) - 1;
|
||
|
}
|
||
|
|
||
|
struct ThrowOverflow {
|
||
|
// Functor which throws an exception complaining about integer overflow. Usually this is used
|
||
|
// with the interfaces in units.h, but is defined here because Cap'n Proto wants to avoid
|
||
|
// including units.h when not using CAPNP_DEBUG_TYPES.
|
||
|
void operator()() const;
|
||
|
};
|
||
|
|
||
|
#if __GNUC__
|
||
|
inline constexpr float inf() { return __builtin_huge_valf(); }
|
||
|
inline constexpr float nan() { return __builtin_nanf(""); }
|
||
|
|
||
|
#elif _MSC_VER
|
||
|
|
||
|
// Do what MSVC math.h does
|
||
|
#pragma warning(push)
|
||
|
#pragma warning(disable: 4756) // "overflow in constant arithmetic"
|
||
|
inline constexpr float inf() { return (float)(1e300 * 1e300); }
|
||
|
#pragma warning(pop)
|
||
|
|
||
|
float nan();
|
||
|
// Unfortunatley, inf() * 0.0f produces a NaN with the sign bit set, whereas our preferred
|
||
|
// canonical NaN should not have the sign bit set. std::numeric_limits<float>::quiet_NaN()
|
||
|
// returns the correct NaN, but we don't want to #include that here. So, we give up and make
|
||
|
// this out-of-line on MSVC.
|
||
|
//
|
||
|
// TODO(msvc): Can we do better?
|
||
|
|
||
|
#else
|
||
|
#error "Not sure how to support your compiler."
|
||
|
#endif
|
||
|
|
||
|
inline constexpr bool isNaN(float f) { return f != f; }
|
||
|
inline constexpr bool isNaN(double f) { return f != f; }
|
||
|
|
||
|
inline int popCount(unsigned int x) {
|
||
|
#if defined(_MSC_VER)
|
||
|
return __popcnt(x);
|
||
|
// Note: __popcnt returns unsigned int, but the value is clearly guaranteed to fit into an int
|
||
|
#else
|
||
|
return __builtin_popcount(x);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Useful fake containers
|
||
|
|
||
|
template <typename T>
|
||
|
class Range {
|
||
|
public:
|
||
|
inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {}
|
||
|
inline explicit constexpr Range(const T& end): begin_(0), end_(end) {}
|
||
|
|
||
|
class Iterator {
|
||
|
public:
|
||
|
Iterator() = default;
|
||
|
inline Iterator(const T& value): value(value) {}
|
||
|
|
||
|
inline const T& operator* () const { return value; }
|
||
|
inline const T& operator[](size_t index) const { return value + index; }
|
||
|
inline Iterator& operator++() { ++value; return *this; }
|
||
|
inline Iterator operator++(int) { return Iterator(value++); }
|
||
|
inline Iterator& operator--() { --value; return *this; }
|
||
|
inline Iterator operator--(int) { return Iterator(value--); }
|
||
|
inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; }
|
||
|
inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; }
|
||
|
inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value + amount); }
|
||
|
inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value - amount); }
|
||
|
inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; }
|
||
|
|
||
|
inline bool operator==(const Iterator& other) const { return value == other.value; }
|
||
|
inline bool operator!=(const Iterator& other) const { return value != other.value; }
|
||
|
inline bool operator<=(const Iterator& other) const { return value <= other.value; }
|
||
|
inline bool operator>=(const Iterator& other) const { return value >= other.value; }
|
||
|
inline bool operator< (const Iterator& other) const { return value < other.value; }
|
||
|
inline bool operator> (const Iterator& other) const { return value > other.value; }
|
||
|
|
||
|
private:
|
||
|
T value;
|
||
|
};
|
||
|
|
||
|
inline Iterator begin() const { return Iterator(begin_); }
|
||
|
inline Iterator end() const { return Iterator(end_); }
|
||
|
|
||
|
inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; }
|
||
|
|
||
|
private:
|
||
|
T begin_;
|
||
|
T end_;
|
||
|
};
|
||
|
|
||
|
template <typename T, typename U>
|
||
|
inline constexpr Range<WiderType<Decay<T>, Decay<U>>> range(T begin, U end) {
|
||
|
return Range<WiderType<Decay<T>, Decay<U>>>(begin, end);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); }
|
||
|
// Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end`
|
||
|
// (exclusive). Example:
|
||
|
//
|
||
|
// // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9.
|
||
|
// for (int i: kj::range(1, 10)) { print(i); }
|
||
|
|
||
|
template <typename T>
|
||
|
inline constexpr Range<Decay<T>> zeroTo(T end) { return Range<Decay<T>>(end); }
|
||
|
// Returns a fake iterable container containing all values of T from zero (inclusive) to `end`
|
||
|
// (exclusive). Example:
|
||
|
//
|
||
|
// // Prints 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
|
||
|
// for (int i: kj::zeroTo(10)) { print(i); }
|
||
|
|
||
|
template <typename T>
|
||
|
inline constexpr Range<size_t> indices(T&& container) {
|
||
|
// Shortcut for iterating over the indices of a container:
|
||
|
//
|
||
|
// for (size_t i: kj::indices(myArray)) { handle(myArray[i]); }
|
||
|
|
||
|
return range<size_t>(0, kj::size(container));
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
class Repeat {
|
||
|
public:
|
||
|
inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {}
|
||
|
|
||
|
class Iterator {
|
||
|
public:
|
||
|
Iterator() = default;
|
||
|
inline Iterator(const T& value, size_t index): value(value), index(index) {}
|
||
|
|
||
|
inline const T& operator* () const { return value; }
|
||
|
inline const T& operator[](ptrdiff_t index) const { return value; }
|
||
|
inline Iterator& operator++() { ++index; return *this; }
|
||
|
inline Iterator operator++(int) { return Iterator(value, index++); }
|
||
|
inline Iterator& operator--() { --index; return *this; }
|
||
|
inline Iterator operator--(int) { return Iterator(value, index--); }
|
||
|
inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; }
|
||
|
inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; }
|
||
|
inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); }
|
||
|
inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); }
|
||
|
inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; }
|
||
|
|
||
|
inline bool operator==(const Iterator& other) const { return index == other.index; }
|
||
|
inline bool operator!=(const Iterator& other) const { return index != other.index; }
|
||
|
inline bool operator<=(const Iterator& other) const { return index <= other.index; }
|
||
|
inline bool operator>=(const Iterator& other) const { return index >= other.index; }
|
||
|
inline bool operator< (const Iterator& other) const { return index < other.index; }
|
||
|
inline bool operator> (const Iterator& other) const { return index > other.index; }
|
||
|
|
||
|
private:
|
||
|
T value;
|
||
|
size_t index;
|
||
|
};
|
||
|
|
||
|
inline Iterator begin() const { return Iterator(value, 0); }
|
||
|
inline Iterator end() const { return Iterator(value, count); }
|
||
|
|
||
|
inline size_t size() const { return count; }
|
||
|
inline const T& operator[](ptrdiff_t) const { return value; }
|
||
|
|
||
|
private:
|
||
|
T value;
|
||
|
size_t count;
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) {
|
||
|
// Returns a fake iterable which contains `count` repeats of `value`. Useful for e.g. creating
|
||
|
// a bunch of spaces: `kj::repeat(' ', indent * 2)`
|
||
|
|
||
|
return Repeat<Decay<T>>(value, count);
|
||
|
}
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Manually invoking constructors and destructors
|
||
|
//
|
||
|
// ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively.
|
||
|
|
||
|
// We want placement new, but we don't want to #include <new>. operator new cannot be defined in
|
||
|
// a namespace, and defining it globally conflicts with the definition in <new>. So we have to
|
||
|
// define a dummy type and an operator new that uses it.
|
||
|
|
||
|
namespace _ { // private
|
||
|
struct PlacementNew {};
|
||
|
} // namespace _ (private)
|
||
|
} // namespace kj
|
||
|
|
||
|
inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept {
|
||
|
return __p;
|
||
|
}
|
||
|
|
||
|
inline void operator delete(void*, kj::_::PlacementNew, void* __p) noexcept {}
|
||
|
|
||
|
namespace kj {
|
||
|
|
||
|
template <typename T, typename... Params>
|
||
|
inline void ctor(T& location, Params&&... params) {
|
||
|
new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline void dtor(T& location) {
|
||
|
location.~T();
|
||
|
}
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Maybe
|
||
|
//
|
||
|
// Use in cases where you want to indicate that a value may be null. Using Maybe<T&> instead of T*
|
||
|
// forces the caller to handle the null case in order to satisfy the compiler, thus reliably
|
||
|
// preventing null pointer dereferences at runtime.
|
||
|
//
|
||
|
// Maybe<T> can be implicitly constructed from T and from nullptr. Additionally, it can be
|
||
|
// implicitly constructed from T*, in which case the pointer is checked for nullness at runtime.
|
||
|
// To read the value of a Maybe<T>, do:
|
||
|
//
|
||
|
// KJ_IF_MAYBE(value, someFuncReturningMaybe()) {
|
||
|
// doSomething(*value);
|
||
|
// } else {
|
||
|
// maybeWasNull();
|
||
|
// }
|
||
|
//
|
||
|
// KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following
|
||
|
// block. The variable will behave like a (guaranteed non-null) pointer to the Maybe's value,
|
||
|
// though it may or may not actually be a pointer.
|
||
|
//
|
||
|
// Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean
|
||
|
// indicating nullness.
|
||
|
|
||
|
template <typename T>
|
||
|
class Maybe;
|
||
|
|
||
|
namespace _ { // private
|
||
|
|
||
|
template <typename T>
|
||
|
class NullableValue {
|
||
|
// Class whose interface behaves much like T*, but actually contains an instance of T and a
|
||
|
// boolean flag indicating nullness.
|
||
|
|
||
|
public:
|
||
|
inline NullableValue(NullableValue&& other) noexcept(noexcept(T(instance<T&&>())))
|
||
|
: isSet(other.isSet) {
|
||
|
if (isSet) {
|
||
|
ctor(value, kj::mv(other.value));
|
||
|
}
|
||
|
}
|
||
|
inline NullableValue(const NullableValue& other)
|
||
|
: isSet(other.isSet) {
|
||
|
if (isSet) {
|
||
|
ctor(value, other.value);
|
||
|
}
|
||
|
}
|
||
|
inline NullableValue(NullableValue& other)
|
||
|
: isSet(other.isSet) {
|
||
|
if (isSet) {
|
||
|
ctor(value, other.value);
|
||
|
}
|
||
|
}
|
||
|
inline ~NullableValue()
|
||
|
#if _MSC_VER
|
||
|
// TODO(msvc): MSVC has a hard time with noexcept specifier expressions that are more complex
|
||
|
// than `true` or `false`. We had a workaround for VS2015, but VS2017 regressed.
|
||
|
noexcept(false)
|
||
|
#else
|
||
|
noexcept(noexcept(instance<T&>().~T()))
|
||
|
#endif
|
||
|
{
|
||
|
if (isSet) {
|
||
|
dtor(value);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline T& operator*() & { return value; }
|
||
|
inline const T& operator*() const & { return value; }
|
||
|
inline T&& operator*() && { return kj::mv(value); }
|
||
|
inline const T&& operator*() const && { return kj::mv(value); }
|
||
|
inline T* operator->() { return &value; }
|
||
|
inline const T* operator->() const { return &value; }
|
||
|
inline operator T*() { return isSet ? &value : nullptr; }
|
||
|
inline operator const T*() const { return isSet ? &value : nullptr; }
|
||
|
|
||
|
template <typename... Params>
|
||
|
inline T& emplace(Params&&... params) {
|
||
|
if (isSet) {
|
||
|
isSet = false;
|
||
|
dtor(value);
|
||
|
}
|
||
|
ctor(value, kj::fwd<Params>(params)...);
|
||
|
isSet = true;
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
private: // internal interface used by friends only
|
||
|
inline NullableValue() noexcept: isSet(false) {}
|
||
|
inline NullableValue(T&& t) noexcept(noexcept(T(instance<T&&>())))
|
||
|
: isSet(true) {
|
||
|
ctor(value, kj::mv(t));
|
||
|
}
|
||
|
inline NullableValue(T& t)
|
||
|
: isSet(true) {
|
||
|
ctor(value, t);
|
||
|
}
|
||
|
inline NullableValue(const T& t)
|
||
|
: isSet(true) {
|
||
|
ctor(value, t);
|
||
|
}
|
||
|
inline NullableValue(const T* t)
|
||
|
: isSet(t != nullptr) {
|
||
|
if (isSet) ctor(value, *t);
|
||
|
}
|
||
|
template <typename U>
|
||
|
inline NullableValue(NullableValue<U>&& other) noexcept(noexcept(T(instance<U&&>())))
|
||
|
: isSet(other.isSet) {
|
||
|
if (isSet) {
|
||
|
ctor(value, kj::mv(other.value));
|
||
|
}
|
||
|
}
|
||
|
template <typename U>
|
||
|
inline NullableValue(const NullableValue<U>& other)
|
||
|
: isSet(other.isSet) {
|
||
|
if (isSet) {
|
||
|
ctor(value, other.value);
|
||
|
}
|
||
|
}
|
||
|
template <typename U>
|
||
|
inline NullableValue(const NullableValue<U&>& other)
|
||
|
: isSet(other.isSet) {
|
||
|
if (isSet) {
|
||
|
ctor(value, *other.ptr);
|
||
|
}
|
||
|
}
|
||
|
inline NullableValue(decltype(nullptr)): isSet(false) {}
|
||
|
|
||
|
inline NullableValue& operator=(NullableValue&& other) {
|
||
|
if (&other != this) {
|
||
|
// Careful about throwing destructors/constructors here.
|
||
|
if (isSet) {
|
||
|
isSet = false;
|
||
|
dtor(value);
|
||
|
}
|
||
|
if (other.isSet) {
|
||
|
ctor(value, kj::mv(other.value));
|
||
|
isSet = true;
|
||
|
}
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
inline NullableValue& operator=(NullableValue& other) {
|
||
|
if (&other != this) {
|
||
|
// Careful about throwing destructors/constructors here.
|
||
|
if (isSet) {
|
||
|
isSet = false;
|
||
|
dtor(value);
|
||
|
}
|
||
|
if (other.isSet) {
|
||
|
ctor(value, other.value);
|
||
|
isSet = true;
|
||
|
}
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
inline NullableValue& operator=(const NullableValue& other) {
|
||
|
if (&other != this) {
|
||
|
// Careful about throwing destructors/constructors here.
|
||
|
if (isSet) {
|
||
|
isSet = false;
|
||
|
dtor(value);
|
||
|
}
|
||
|
if (other.isSet) {
|
||
|
ctor(value, other.value);
|
||
|
isSet = true;
|
||
|
}
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
inline bool operator==(decltype(nullptr)) const { return !isSet; }
|
||
|
inline bool operator!=(decltype(nullptr)) const { return isSet; }
|
||
|
|
||
|
private:
|
||
|
bool isSet;
|
||
|
|
||
|
#if _MSC_VER
|
||
|
#pragma warning(push)
|
||
|
#pragma warning(disable: 4624)
|
||
|
// Warns that the anonymous union has a deleted destructor when T is non-trivial. This warning
|
||
|
// seems broken.
|
||
|
#endif
|
||
|
|
||
|
union {
|
||
|
T value;
|
||
|
};
|
||
|
|
||
|
#if _MSC_VER
|
||
|
#pragma warning(pop)
|
||
|
#endif
|
||
|
|
||
|
friend class kj::Maybe<T>;
|
||
|
template <typename U>
|
||
|
friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe);
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); }
|
||
|
template <typename T>
|
||
|
inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; }
|
||
|
template <typename T>
|
||
|
inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; }
|
||
|
template <typename T>
|
||
|
inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; }
|
||
|
template <typename T>
|
||
|
inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; }
|
||
|
|
||
|
template <typename T>
|
||
|
inline T* readMaybe(T* ptr) { return ptr; }
|
||
|
// Allow KJ_IF_MAYBE to work on regular pointers.
|
||
|
|
||
|
} // namespace _ (private)
|
||
|
|
||
|
#define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp))
|
||
|
|
||
|
template <typename T>
|
||
|
class Maybe {
|
||
|
// A T, or nullptr.
|
||
|
|
||
|
// IF YOU CHANGE THIS CLASS: Note that there is a specialization of it in memory.h.
|
||
|
|
||
|
public:
|
||
|
Maybe(): ptr(nullptr) {}
|
||
|
Maybe(T&& t) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(t)) {}
|
||
|
Maybe(T& t): ptr(t) {}
|
||
|
Maybe(const T& t): ptr(t) {}
|
||
|
Maybe(const T* t) noexcept: ptr(t) {}
|
||
|
Maybe(Maybe&& other) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(other.ptr)) {}
|
||
|
Maybe(const Maybe& other): ptr(other.ptr) {}
|
||
|
Maybe(Maybe& other): ptr(other.ptr) {}
|
||
|
|
||
|
template <typename U>
|
||
|
Maybe(Maybe<U>&& other) noexcept(noexcept(T(instance<U&&>()))) {
|
||
|
KJ_IF_MAYBE(val, kj::mv(other)) {
|
||
|
ptr.emplace(kj::mv(*val));
|
||
|
}
|
||
|
}
|
||
|
template <typename U>
|
||
|
Maybe(const Maybe<U>& other) {
|
||
|
KJ_IF_MAYBE(val, other) {
|
||
|
ptr.emplace(*val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
|
||
|
|
||
|
template <typename... Params>
|
||
|
inline T& emplace(Params&&... params) {
|
||
|
// Replace this Maybe's content with a new value constructed by passing the given parametrs to
|
||
|
// T's constructor. This can be used to initialize a Maybe without copying or even moving a T.
|
||
|
// Returns a reference to the newly-constructed value.
|
||
|
|
||
|
return ptr.emplace(kj::fwd<Params>(params)...);
|
||
|
}
|
||
|
|
||
|
inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
|
||
|
inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; }
|
||
|
inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; }
|
||
|
|
||
|
inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
|
||
|
inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
|
||
|
|
||
|
T& orDefault(T& defaultValue) {
|
||
|
if (ptr == nullptr) {
|
||
|
return defaultValue;
|
||
|
} else {
|
||
|
return *ptr;
|
||
|
}
|
||
|
}
|
||
|
const T& orDefault(const T& defaultValue) const {
|
||
|
if (ptr == nullptr) {
|
||
|
return defaultValue;
|
||
|
} else {
|
||
|
return *ptr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename Func>
|
||
|
auto map(Func&& f) & -> Maybe<decltype(f(instance<T&>()))> {
|
||
|
if (ptr == nullptr) {
|
||
|
return nullptr;
|
||
|
} else {
|
||
|
return f(*ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename Func>
|
||
|
auto map(Func&& f) const & -> Maybe<decltype(f(instance<const T&>()))> {
|
||
|
if (ptr == nullptr) {
|
||
|
return nullptr;
|
||
|
} else {
|
||
|
return f(*ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename Func>
|
||
|
auto map(Func&& f) && -> Maybe<decltype(f(instance<T&&>()))> {
|
||
|
if (ptr == nullptr) {
|
||
|
return nullptr;
|
||
|
} else {
|
||
|
return f(kj::mv(*ptr));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename Func>
|
||
|
auto map(Func&& f) const && -> Maybe<decltype(f(instance<const T&&>()))> {
|
||
|
if (ptr == nullptr) {
|
||
|
return nullptr;
|
||
|
} else {
|
||
|
return f(kj::mv(*ptr));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
_::NullableValue<T> ptr;
|
||
|
|
||
|
template <typename U>
|
||
|
friend class Maybe;
|
||
|
template <typename U>
|
||
|
friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe);
|
||
|
template <typename U>
|
||
|
friend U* _::readMaybe(Maybe<U>& maybe);
|
||
|
template <typename U>
|
||
|
friend const U* _::readMaybe(const Maybe<U>& maybe);
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
class Maybe<T&>: public DisallowConstCopyIfNotConst<T> {
|
||
|
public:
|
||
|
Maybe() noexcept: ptr(nullptr) {}
|
||
|
Maybe(T& t) noexcept: ptr(&t) {}
|
||
|
Maybe(T* t) noexcept: ptr(t) {}
|
||
|
|
||
|
template <typename U>
|
||
|
inline Maybe(Maybe<U&>& other) noexcept: ptr(other.ptr) {}
|
||
|
template <typename U>
|
||
|
inline Maybe(const Maybe<const U&>& other) noexcept: ptr(other.ptr) {}
|
||
|
inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
|
||
|
|
||
|
inline Maybe& operator=(T& other) noexcept { ptr = &other; return *this; }
|
||
|
inline Maybe& operator=(T* other) noexcept { ptr = other; return *this; }
|
||
|
template <typename U>
|
||
|
inline Maybe& operator=(Maybe<U&>& other) noexcept { ptr = other.ptr; return *this; }
|
||
|
template <typename U>
|
||
|
inline Maybe& operator=(const Maybe<const U&>& other) noexcept { ptr = other.ptr; return *this; }
|
||
|
|
||
|
inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
|
||
|
inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
|
||
|
|
||
|
T& orDefault(T& defaultValue) {
|
||
|
if (ptr == nullptr) {
|
||
|
return defaultValue;
|
||
|
} else {
|
||
|
return *ptr;
|
||
|
}
|
||
|
}
|
||
|
const T& orDefault(const T& defaultValue) const {
|
||
|
if (ptr == nullptr) {
|
||
|
return defaultValue;
|
||
|
} else {
|
||
|
return *ptr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename Func>
|
||
|
auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
|
||
|
if (ptr == nullptr) {
|
||
|
return nullptr;
|
||
|
} else {
|
||
|
return f(*ptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
T* ptr;
|
||
|
|
||
|
template <typename U>
|
||
|
friend class Maybe;
|
||
|
template <typename U>
|
||
|
friend U* _::readMaybe(Maybe<U&>&& maybe);
|
||
|
template <typename U>
|
||
|
friend U* _::readMaybe(const Maybe<U&>& maybe);
|
||
|
};
|
||
|
|
||
|
// =======================================================================================
|
||
|
// ArrayPtr
|
||
|
//
|
||
|
// So common that we put it in common.h rather than array.h.
|
||
|
|
||
|
template <typename T>
|
||
|
class ArrayPtr: public DisallowConstCopyIfNotConst<T> {
|
||
|
// A pointer to an array. Includes a size. Like any pointer, it doesn't own the target data,
|
||
|
// and passing by value only copies the pointer, not the target.
|
||
|
|
||
|
public:
|
||
|
inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {}
|
||
|
inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {}
|
||
|
inline constexpr ArrayPtr(T* ptr, size_t size): ptr(ptr), size_(size) {}
|
||
|
inline constexpr ArrayPtr(T* begin, T* end): ptr(begin), size_(end - begin) {}
|
||
|
inline KJ_CONSTEXPR() ArrayPtr(::std::initializer_list<RemoveConstOrDisable<T>> init)
|
||
|
: ptr(init.begin()), size_(init.size()) {}
|
||
|
|
||
|
template <size_t size>
|
||
|
inline constexpr ArrayPtr(T (&native)[size]): ptr(native), size_(size) {}
|
||
|
// Construct an ArrayPtr from a native C-style array.
|
||
|
|
||
|
inline operator ArrayPtr<const T>() const {
|
||
|
return ArrayPtr<const T>(ptr, size_);
|
||
|
}
|
||
|
inline ArrayPtr<const T> asConst() const {
|
||
|
return ArrayPtr<const T>(ptr, size_);
|
||
|
}
|
||
|
|
||
|
inline size_t size() const { return size_; }
|
||
|
inline const T& operator[](size_t index) const {
|
||
|
KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
|
||
|
return ptr[index];
|
||
|
}
|
||
|
inline T& operator[](size_t index) {
|
||
|
KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
|
||
|
return ptr[index];
|
||
|
}
|
||
|
|
||
|
inline T* begin() { return ptr; }
|
||
|
inline T* end() { return ptr + size_; }
|
||
|
inline T& front() { return *ptr; }
|
||
|
inline T& back() { return *(ptr + size_ - 1); }
|
||
|
inline const T* begin() const { return ptr; }
|
||
|
inline const T* end() const { return ptr + size_; }
|
||
|
inline const T& front() const { return *ptr; }
|
||
|
inline const T& back() const { return *(ptr + size_ - 1); }
|
||
|
|
||
|
inline ArrayPtr<const T> slice(size_t start, size_t end) const {
|
||
|
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
|
||
|
return ArrayPtr<const T>(ptr + start, end - start);
|
||
|
}
|
||
|
inline ArrayPtr slice(size_t start, size_t end) {
|
||
|
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
|
||
|
return ArrayPtr(ptr + start, end - start);
|
||
|
}
|
||
|
|
||
|
inline ArrayPtr<PropagateConst<T, byte>> asBytes() const {
|
||
|
// Reinterpret the array as a byte array. This is explicitly legal under C++ aliasing
|
||
|
// rules.
|
||
|
return { reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_ * sizeof(T) };
|
||
|
}
|
||
|
inline ArrayPtr<PropagateConst<T, char>> asChars() const {
|
||
|
// Reinterpret the array as a char array. This is explicitly legal under C++ aliasing
|
||
|
// rules.
|
||
|
return { reinterpret_cast<PropagateConst<T, char>*>(ptr), size_ * sizeof(T) };
|
||
|
}
|
||
|
|
||
|
inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
|
||
|
inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
|
||
|
|
||
|
inline bool operator==(const ArrayPtr& other) const {
|
||
|
if (size_ != other.size_) return false;
|
||
|
for (size_t i = 0; i < size_; i++) {
|
||
|
if (ptr[i] != other[i]) return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); }
|
||
|
|
||
|
private:
|
||
|
T* ptr;
|
||
|
size_t size_;
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
inline constexpr ArrayPtr<T> arrayPtr(T* ptr, size_t size) {
|
||
|
// Use this function to construct ArrayPtrs without writing out the type name.
|
||
|
return ArrayPtr<T>(ptr, size);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
inline constexpr ArrayPtr<T> arrayPtr(T* begin, T* end) {
|
||
|
// Use this function to construct ArrayPtrs without writing out the type name.
|
||
|
return ArrayPtr<T>(begin, end);
|
||
|
}
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Casts
|
||
|
|
||
|
template <typename To, typename From>
|
||
|
To implicitCast(From&& from) {
|
||
|
// `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit. Useful
|
||
|
// for e.g. resolving ambiguous overloads without sacrificing type-safety.
|
||
|
return kj::fwd<From>(from);
|
||
|
}
|
||
|
|
||
|
template <typename To, typename From>
|
||
|
Maybe<To&> dynamicDowncastIfAvailable(From& from) {
|
||
|
// If RTTI is disabled, always returns nullptr. Otherwise, works like dynamic_cast. Useful
|
||
|
// in situations where dynamic_cast could allow an optimization, but isn't strictly necessary
|
||
|
// for correctness. It is highly recommended that you try to arrange all your dynamic_casts
|
||
|
// this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface
|
||
|
// design.
|
||
|
|
||
|
// Force a compile error if To is not a subtype of From. Cross-casting is rare; if it is needed
|
||
|
// we should have a separate cast function like dynamicCrosscastIfAvailable().
|
||
|
if (false) {
|
||
|
kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
|
||
|
}
|
||
|
|
||
|
#if KJ_NO_RTTI
|
||
|
return nullptr;
|
||
|
#else
|
||
|
return dynamic_cast<To*>(&from);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
template <typename To, typename From>
|
||
|
To& downcast(From& from) {
|
||
|
// Down-cast a value to a sub-type, asserting that the cast is valid. In opt mode this is a
|
||
|
// static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify
|
||
|
// that the value really has the requested type.
|
||
|
|
||
|
// Force a compile error if To is not a subtype of From.
|
||
|
if (false) {
|
||
|
kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
|
||
|
}
|
||
|
|
||
|
#if !KJ_NO_RTTI
|
||
|
KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type.");
|
||
|
#endif
|
||
|
|
||
|
return static_cast<To&>(from);
|
||
|
}
|
||
|
|
||
|
// =======================================================================================
|
||
|
// Defer
|
||
|
|
||
|
namespace _ { // private
|
||
|
|
||
|
template <typename Func>
|
||
|
class Deferred {
|
||
|
public:
|
||
|
inline Deferred(Func&& func): func(kj::fwd<Func>(func)), canceled(false) {}
|
||
|
inline ~Deferred() noexcept(false) { if (!canceled) func(); }
|
||
|
KJ_DISALLOW_COPY(Deferred);
|
||
|
|
||
|
// This move constructor is usually optimized away by the compiler.
|
||
|
inline Deferred(Deferred&& other): func(kj::mv(other.func)), canceled(false) {
|
||
|
other.canceled = true;
|
||
|
}
|
||
|
private:
|
||
|
Func func;
|
||
|
bool canceled;
|
||
|
};
|
||
|
|
||
|
} // namespace _ (private)
|
||
|
|
||
|
template <typename Func>
|
||
|
_::Deferred<Func> defer(Func&& func) {
|
||
|
// Returns an object which will invoke the given functor in its destructor. The object is not
|
||
|
// copyable but is movable with the semantics you'd expect. Since the return type is private,
|
||
|
// you need to assign to an `auto` variable.
|
||
|
//
|
||
|
// The KJ_DEFER macro provides slightly more convenient syntax for the common case where you
|
||
|
// want some code to run at current scope exit.
|
||
|
|
||
|
return _::Deferred<Func>(kj::fwd<Func>(func));
|
||
|
}
|
||
|
|
||
|
#define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;})
|
||
|
// Run the given code when the function exits, whether by return or exception.
|
||
|
|
||
|
} // namespace kj
|
||
|
|
||
|
#endif // KJ_COMMON_H_
|