openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

599 lines
19 KiB

#include "selfdrive/boardd/boardd.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <bitset>
#include <cassert>
#include <cerrno>
#include <chrono>
#include <future>
#include <memory>
#include <thread>
#include "cereal/gen/cpp/car.capnp.h"
#include "cereal/messaging/messaging.h"
#include "common/params.h"
#include "common/ratekeeper.h"
#include "common/swaglog.h"
#include "common/timing.h"
#include "common/util.h"
#include "system/hardware/hw.h"
// -- Multi-panda conventions --
// Ordering:
// - The internal panda will always be the first panda
// - Consecutive pandas will be sorted based on panda type, and then serial number
// Connecting:
// - If a panda connection is dropped, boardd will reconnect to all pandas
// - If a panda is added, we will only reconnect when we are offroad
// CAN buses:
// - Each panda will have it's block of 4 buses. E.g.: the second panda will use
// bus numbers 4, 5, 6 and 7
// - The internal panda will always be used for accessing the OBD2 port,
// and thus firmware queries
// Safety:
// - SafetyConfig is a list, which is mapped to the connected pandas
// - If there are more pandas connected than there are SafetyConfigs,
// the excess pandas will remain in "silent" or "noOutput" mode
// Ignition:
// - If any of the ignition sources in any panda is high, ignition is high
#define MAX_IR_POWER 0.5f
#define MIN_IR_POWER 0.0f
#define CUTOFF_IL 400
#define SATURATE_IL 1000
using namespace std::chrono_literals;
std::atomic<bool> ignition(false);
ExitHandler do_exit;
bool check_all_connected(const std::vector<Panda *> &pandas) {
for (const auto& panda : pandas) {
if (!panda->connected()) {
do_exit = true;
return false;
}
}
return true;
}
bool safety_setter_thread(std::vector<Panda *> pandas) {
LOGD("Starting safety setter thread");
Params p;
// there should be at least one panda connected
if (pandas.size() == 0) {
return false;
}
// initialize to ELM327 without OBD multiplexing for fingerprinting
bool obd_multiplexing_enabled = false;
for (int i = 0; i < pandas.size(); i++) {
pandas[i]->set_safety_model(cereal::CarParams::SafetyModel::ELM327, 1U);
}
// openpilot can switch between multiplexing modes for different FW queries
while (true) {
if (do_exit || !check_all_connected(pandas) || !ignition) {
return false;
}
bool obd_multiplexing_requested = p.getBool("ObdMultiplexingEnabled");
if (obd_multiplexing_requested != obd_multiplexing_enabled) {
for (int i = 0; i < pandas.size(); i++) {
const uint16_t safety_param = (i > 0 || !obd_multiplexing_requested) ? 1U : 0U;
pandas[i]->set_safety_model(cereal::CarParams::SafetyModel::ELM327, safety_param);
}
obd_multiplexing_enabled = obd_multiplexing_requested;
p.putBool("ObdMultiplexingChanged", true);
}
if (p.getBool("FirmwareQueryDone")) {
LOGW("finished FW query");
break;
}
util::sleep_for(20);
}
std::string params;
LOGW("waiting for params to set safety model");
while (true) {
if (do_exit || !check_all_connected(pandas) || !ignition) {
return false;
}
if (p.getBool("ControlsReady")) {
params = p.get("CarParams");
if (params.size() > 0) break;
}
util::sleep_for(100);
}
LOGW("got %lu bytes CarParams", params.size());
AlignedBuffer aligned_buf;
capnp::FlatArrayMessageReader cmsg(aligned_buf.align(params.data(), params.size()));
cereal::CarParams::Reader car_params = cmsg.getRoot<cereal::CarParams>();
cereal::CarParams::SafetyModel safety_model;
uint16_t safety_param;
auto safety_configs = car_params.getSafetyConfigs();
uint16_t alternative_experience = car_params.getAlternativeExperience();
for (uint32_t i = 0; i < pandas.size(); i++) {
auto panda = pandas[i];
if (safety_configs.size() > i) {
safety_model = safety_configs[i].getSafetyModel();
safety_param = safety_configs[i].getSafetyParam();
} else {
// If no safety mode is specified, default to silent
safety_model = cereal::CarParams::SafetyModel::SILENT;
safety_param = 0U;
}
LOGW("panda %d: setting safety model: %d, param: %d, alternative experience: %d", i, (int)safety_model, safety_param, alternative_experience);
panda->set_alternative_experience(alternative_experience);
panda->set_safety_model(safety_model, safety_param);
}
return true;
}
Panda *connect(std::string serial="", uint32_t index=0) {
std::unique_ptr<Panda> panda;
try {
panda = std::make_unique<Panda>(serial, (index * PANDA_BUS_CNT));
} catch (std::exception &e) {
return nullptr;
}
// common panda config
if (getenv("BOARDD_LOOPBACK")) {
panda->set_loopback(true);
}
//panda->enable_deepsleep();
if (!panda->up_to_date() && !getenv("BOARDD_SKIP_FW_CHECK")) {
throw std::runtime_error("Panda firmware out of date. Run pandad.py to update.");
}
return panda.release();
}
void can_send_thread(std::vector<Panda *> pandas, bool fake_send) {
util::set_thread_name("boardd_can_send");
AlignedBuffer aligned_buf;
std::unique_ptr<Context> context(Context::create());
std::unique_ptr<SubSocket> subscriber(SubSocket::create(context.get(), "sendcan"));
assert(subscriber != NULL);
subscriber->setTimeout(100);
// run as fast as messages come in
while (!do_exit && check_all_connected(pandas)) {
std::unique_ptr<Message> msg(subscriber->receive());
if (!msg) {
if (errno == EINTR) {
do_exit = true;
}
continue;
}
capnp::FlatArrayMessageReader cmsg(aligned_buf.align(msg.get()));
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
// Don't send if older than 1 second
if ((nanos_since_boot() - event.getLogMonoTime() < 1e9) && !fake_send) {
for (const auto& panda : pandas) {
LOGT("sending sendcan to panda: %s", (panda->hw_serial()).c_str());
panda->can_send(event.getSendcan());
LOGT("sendcan sent to panda: %s", (panda->hw_serial()).c_str());
}
} else {
LOGE("sendcan too old to send: %" PRIu64 ", %" PRIu64, nanos_since_boot(), event.getLogMonoTime());
}
}
}
void can_recv_thread(std::vector<Panda *> pandas) {
util::set_thread_name("boardd_can_recv");
PubMaster pm({"can"});
// run at 100Hz
RateKeeper rk("boardd_can_recv", 100);
std::vector<can_frame> raw_can_data;
while (!do_exit && check_all_connected(pandas)) {
bool comms_healthy = true;
raw_can_data.clear();
for (const auto& panda : pandas) {
comms_healthy &= panda->can_receive(raw_can_data);
}
MessageBuilder msg;
auto evt = msg.initEvent();
evt.setValid(comms_healthy);
auto canData = evt.initCan(raw_can_data.size());
for (uint i = 0; i<raw_can_data.size(); i++) {
canData[i].setAddress(raw_can_data[i].address);
canData[i].setBusTime(raw_can_data[i].busTime);
canData[i].setDat(kj::arrayPtr((uint8_t*)raw_can_data[i].dat.data(), raw_can_data[i].dat.size()));
canData[i].setSrc(raw_can_data[i].src);
}
pm.send("can", msg);
rk.keepTime();
}
}
std::optional<bool> send_panda_states(PubMaster *pm, const std::vector<Panda *> &pandas, bool spoofing_started) {
bool ignition_local = false;
const uint32_t pandas_cnt = pandas.size();
// build msg
MessageBuilder msg;
auto evt = msg.initEvent();
auto pss = evt.initPandaStates(pandas_cnt);
std::vector<health_t> pandaStates;
pandaStates.reserve(pandas_cnt);
std::vector<std::array<can_health_t, PANDA_CAN_CNT>> pandaCanStates;
pandaCanStates.reserve(pandas_cnt);
const bool red_panda_comma_three = (pandas.size() == 2) &&
(pandas[0]->hw_type == cereal::PandaState::PandaType::DOS) &&
(pandas[1]->hw_type == cereal::PandaState::PandaType::RED_PANDA);
for (const auto& panda : pandas){
auto health_opt = panda->get_state();
if (!health_opt) {
return std::nullopt;
}
health_t health = *health_opt;
std::array<can_health_t, PANDA_CAN_CNT> can_health{};
for (uint32_t i = 0; i < PANDA_CAN_CNT; i++) {
auto can_health_opt = panda->get_can_state(i);
if (!can_health_opt) {
return std::nullopt;
}
can_health[i] = *can_health_opt;
}
pandaCanStates.push_back(can_health);
if (spoofing_started) {
health.ignition_line_pkt = 1;
}
// on comma three setups with a red panda, the dos can
// get false positive ignitions due to the harness box
// without a harness connector, so ignore it
if (red_panda_comma_three && (panda->hw_type == cereal::PandaState::PandaType::DOS)) {
health.ignition_line_pkt = 0;
}
ignition_local |= ((health.ignition_line_pkt != 0) || (health.ignition_can_pkt != 0));
pandaStates.push_back(health);
}
for (uint32_t i = 0; i < pandas_cnt; i++) {
auto panda = pandas[i];
const auto &health = pandaStates[i];
// Make sure CAN buses are live: safety_setter_thread does not work if Panda CAN are silent and there is only one other CAN node
if (health.safety_mode_pkt == (uint8_t)(cereal::CarParams::SafetyModel::SILENT)) {
panda->set_safety_model(cereal::CarParams::SafetyModel::NO_OUTPUT);
}
bool power_save_desired = !ignition_local;
if (health.power_save_enabled_pkt != power_save_desired) {
panda->set_power_saving(power_save_desired);
}
// set safety mode to NO_OUTPUT when car is off. ELM327 is an alternative if we want to leverage athenad/connect
if (!ignition_local && (health.safety_mode_pkt != (uint8_t)(cereal::CarParams::SafetyModel::NO_OUTPUT))) {
panda->set_safety_model(cereal::CarParams::SafetyModel::NO_OUTPUT);
}
if (!panda->comms_healthy()) {
evt.setValid(false);
}
auto ps = pss[i];
ps.setVoltage(health.voltage_pkt);
ps.setCurrent(health.current_pkt);
ps.setUptime(health.uptime_pkt);
ps.setSafetyTxBlocked(health.safety_tx_blocked_pkt);
ps.setSafetyRxInvalid(health.safety_rx_invalid_pkt);
ps.setIgnitionLine(health.ignition_line_pkt);
ps.setIgnitionCan(health.ignition_can_pkt);
ps.setControlsAllowed(health.controls_allowed_pkt);
ps.setTxBufferOverflow(health.tx_buffer_overflow_pkt);
ps.setRxBufferOverflow(health.rx_buffer_overflow_pkt);
ps.setPandaType(panda->hw_type);
ps.setSafetyModel(cereal::CarParams::SafetyModel(health.safety_mode_pkt));
ps.setSafetyParam(health.safety_param_pkt);
ps.setFaultStatus(cereal::PandaState::FaultStatus(health.fault_status_pkt));
ps.setPowerSaveEnabled((bool)(health.power_save_enabled_pkt));
ps.setHeartbeatLost((bool)(health.heartbeat_lost_pkt));
ps.setAlternativeExperience(health.alternative_experience_pkt);
ps.setHarnessStatus(cereal::PandaState::HarnessStatus(health.car_harness_status_pkt));
ps.setInterruptLoad(health.interrupt_load_pkt);
ps.setFanPower(health.fan_power);
ps.setFanStallCount(health.fan_stall_count);
ps.setSafetyRxChecksInvalid((bool)(health.safety_rx_checks_invalid_pkt));
ps.setSpiChecksumErrorCount(health.spi_checksum_error_count_pkt);
ps.setSbu1Voltage(health.sbu1_voltage_mV / 1000.0f);
ps.setSbu2Voltage(health.sbu2_voltage_mV / 1000.0f);
std::array<cereal::PandaState::PandaCanState::Builder, PANDA_CAN_CNT> cs = {ps.initCanState0(), ps.initCanState1(), ps.initCanState2()};
for (uint32_t j = 0; j < PANDA_CAN_CNT; j++) {
const auto &can_health = pandaCanStates[i][j];
cs[j].setBusOff((bool)can_health.bus_off);
cs[j].setBusOffCnt(can_health.bus_off_cnt);
cs[j].setErrorWarning((bool)can_health.error_warning);
cs[j].setErrorPassive((bool)can_health.error_passive);
cs[j].setLastError(cereal::PandaState::PandaCanState::LecErrorCode(can_health.last_error));
cs[j].setLastStoredError(cereal::PandaState::PandaCanState::LecErrorCode(can_health.last_stored_error));
cs[j].setLastDataError(cereal::PandaState::PandaCanState::LecErrorCode(can_health.last_data_error));
cs[j].setLastDataStoredError(cereal::PandaState::PandaCanState::LecErrorCode(can_health.last_data_stored_error));
cs[j].setReceiveErrorCnt(can_health.receive_error_cnt);
cs[j].setTransmitErrorCnt(can_health.transmit_error_cnt);
cs[j].setTotalErrorCnt(can_health.total_error_cnt);
cs[j].setTotalTxLostCnt(can_health.total_tx_lost_cnt);
cs[j].setTotalRxLostCnt(can_health.total_rx_lost_cnt);
cs[j].setTotalTxCnt(can_health.total_tx_cnt);
cs[j].setTotalRxCnt(can_health.total_rx_cnt);
cs[j].setTotalFwdCnt(can_health.total_fwd_cnt);
cs[j].setCanSpeed(can_health.can_speed);
cs[j].setCanDataSpeed(can_health.can_data_speed);
cs[j].setCanfdEnabled(can_health.canfd_enabled);
cs[j].setBrsEnabled(can_health.brs_enabled);
cs[j].setCanfdNonIso(can_health.canfd_non_iso);
cs[j].setIrq0CallRate(can_health.irq0_call_rate);
cs[j].setIrq1CallRate(can_health.irq1_call_rate);
cs[j].setIrq2CallRate(can_health.irq2_call_rate);
cs[j].setCanCoreResetCnt(can_health.can_core_reset_cnt);
}
// Convert faults bitset to capnp list
std::bitset<sizeof(health.faults_pkt) * 8> fault_bits(health.faults_pkt);
auto faults = ps.initFaults(fault_bits.count());
size_t j = 0;
for (size_t f = size_t(cereal::PandaState::FaultType::RELAY_MALFUNCTION);
f <= size_t(cereal::PandaState::FaultType::HEARTBEAT_LOOP_WATCHDOG); f++) {
if (fault_bits.test(f)) {
faults.set(j, cereal::PandaState::FaultType(f));
j++;
}
}
}
pm->send("pandaStates", msg);
return ignition_local;
}
void send_peripheral_state(PubMaster *pm, Panda *panda) {
// build msg
MessageBuilder msg;
auto evt = msg.initEvent();
evt.setValid(panda->comms_healthy());
auto ps = evt.initPeripheralState();
ps.setPandaType(panda->hw_type);
double read_time = millis_since_boot();
ps.setVoltage(Hardware::get_voltage());
ps.setCurrent(Hardware::get_current());
read_time = millis_since_boot() - read_time;
if (read_time > 50) {
LOGW("reading hwmon took %lfms", read_time);
}
uint16_t fan_speed_rpm = panda->get_fan_speed();
ps.setFanSpeedRpm(fan_speed_rpm);
pm->send("peripheralState", msg);
}
void panda_state_thread(std::vector<Panda *> pandas, bool spoofing_started) {
util::set_thread_name("boardd_panda_state");
Params params;
SubMaster sm({"controlsState"});
PubMaster pm({"pandaStates", "peripheralState"});
Panda *peripheral_panda = pandas[0];
bool is_onroad = false;
bool is_onroad_last = false;
std::future<bool> safety_future;
std::vector<std::string> connected_serials;
for (Panda *p : pandas) {
connected_serials.push_back(p->hw_serial());
}
LOGD("start panda state thread");
// run at 10hz
RateKeeper rk("panda_state_thread", 10);
while (!do_exit && check_all_connected(pandas)) {
// send out peripheralState at 2Hz
if (sm.frame % 5 == 0) {
send_peripheral_state(&pm, peripheral_panda);
}
auto ignition_opt = send_panda_states(&pm, pandas, spoofing_started);
if (!ignition_opt) {
LOGE("Failed to get ignition_opt");
rk.keepTime();
continue;
}
ignition = *ignition_opt;
// check if we should have pandad reconnect
if (!ignition) {
bool comms_healthy = true;
for (const auto &panda : pandas) {
comms_healthy &= panda->comms_healthy();
}
if (!comms_healthy) {
LOGE("Reconnecting, communication to pandas not healthy");
do_exit = true;
} else {
// check for new pandas
for (std::string &s : Panda::list(true)) {
if (!std::count(connected_serials.begin(), connected_serials.end(), s)) {
LOGW("Reconnecting to new panda: %s", s.c_str());
do_exit = true;
break;
}
}
}
if (do_exit) {
break;
}
}
is_onroad = params.getBool("IsOnroad");
// set new safety on onroad transition, after params are cleared
if (is_onroad && !is_onroad_last) {
if (!safety_future.valid() || safety_future.wait_for(0ms) == std::future_status::ready) {
safety_future = std::async(std::launch::async, safety_setter_thread, pandas);
} else {
LOGW("Safety setter thread already running");
}
}
is_onroad_last = is_onroad;
sm.update(0);
const bool engaged = sm.allAliveAndValid({"controlsState"}) && sm["controlsState"].getControlsState().getEnabled();
for (const auto &panda : pandas) {
panda->send_heartbeat(engaged);
}
rk.keepTime();
}
}
void peripheral_control_thread(Panda *panda, bool no_fan_control) {
util::set_thread_name("boardd_peripheral_control");
SubMaster sm({"deviceState", "driverCameraState"});
uint64_t last_driver_camera_t = 0;
uint16_t prev_fan_speed = 999;
uint16_t ir_pwr = 0;
uint16_t prev_ir_pwr = 999;
FirstOrderFilter integ_lines_filter(0, 30.0, 0.05);
while (!do_exit && panda->connected()) {
sm.update(1000);
if (sm.updated("deviceState") && !no_fan_control) {
// Fan speed
uint16_t fan_speed = sm["deviceState"].getDeviceState().getFanSpeedPercentDesired();
if (fan_speed != prev_fan_speed || sm.frame % 100 == 0) {
panda->set_fan_speed(fan_speed);
prev_fan_speed = fan_speed;
}
}
if (sm.updated("driverCameraState")) {
auto event = sm["driverCameraState"];
int cur_integ_lines = event.getDriverCameraState().getIntegLines();
cur_integ_lines = integ_lines_filter.update(cur_integ_lines);
last_driver_camera_t = event.getLogMonoTime();
if (cur_integ_lines <= CUTOFF_IL) {
ir_pwr = 100.0 * MIN_IR_POWER;
} else if (cur_integ_lines > SATURATE_IL) {
ir_pwr = 100.0 * MAX_IR_POWER;
} else {
ir_pwr = 100.0 * (MIN_IR_POWER + ((cur_integ_lines - CUTOFF_IL) * (MAX_IR_POWER - MIN_IR_POWER) / (SATURATE_IL - CUTOFF_IL)));
}
}
// Disable IR on input timeout
if (nanos_since_boot() - last_driver_camera_t > 1e9) {
ir_pwr = 0;
}
if (ir_pwr != prev_ir_pwr || sm.frame % 100 == 0 || ir_pwr >= 50.0) {
panda->set_ir_pwr(ir_pwr);
prev_ir_pwr = ir_pwr;
}
}
}
void boardd_main_thread(std::vector<std::string> serials) {
LOGW("launching boardd");
if (serials.size() == 0) {
serials = Panda::list();
if (serials.size() == 0) {
LOGW("no pandas found, exiting");
return;
}
}
std::string serials_str;
for (int i = 0; i < serials.size(); i++) {
serials_str += serials[i];
if (i < serials.size() - 1) serials_str += ", ";
}
LOGW("connecting to pandas: %s", serials_str.c_str());
// connect to all provided serials
std::vector<Panda *> pandas;
for (int i = 0; i < serials.size() && !do_exit; /**/) {
Panda *p = connect(serials[i], i);
if (!p) {
util::sleep_for(100);
continue;
}
pandas.push_back(p);
++i;
}
if (!do_exit) {
LOGW("connected to all pandas");
std::vector<std::thread> threads;
threads.emplace_back(panda_state_thread, pandas, getenv("STARTED") != nullptr);
threads.emplace_back(peripheral_control_thread, pandas[0], getenv("NO_FAN_CONTROL") != nullptr);
threads.emplace_back(can_send_thread, pandas, getenv("FAKESEND") != nullptr);
threads.emplace_back(can_recv_thread, pandas);
for (auto &t : threads) t.join();
}
for (Panda *panda : pandas) {
delete panda;
}
}