#!/usr/bin/env python3
import importlib
import math
from collections import defaultdict , deque
import cereal . messaging as messaging
from cereal import car
from common . numpy_fast import interp
from common . params import Params
from common . realtime import Ratekeeper , Priority , config_realtime_process
from selfdrive . config import RADAR_TO_CAMERA
from selfdrive . controls . lib . cluster . fastcluster_py import cluster_points_centroid
from selfdrive . controls . lib . radar_helpers import Cluster , Track
from selfdrive . swaglog import cloudlog
from selfdrive . hardware import TICI
class KalmanParams ( ) :
def __init__ ( self , dt ) :
# Lead Kalman Filter params, calculating K from A, C, Q, R requires the control library.
# hardcoding a lookup table to compute K for values of radar_ts between 0.01s and 0.2s
assert dt > .01 and dt < .2 , " Radar time step must be between .01s and 0.2s "
self . A = [ [ 1.0 , dt ] , [ 0.0 , 1.0 ] ]
self . C = [ 1.0 , 0.0 ]
#Q = np.matrix([[10., 0.0], [0.0, 100.]])
#R = 1e3
#K = np.matrix([[ 0.05705578], [ 0.03073241]])
dts = [ dt * 0.01 for dt in range ( 1 , 21 ) ]
K0 = [ 0.12287673 , 0.14556536 , 0.16522756 , 0.18281627 , 0.1988689 , 0.21372394 ,
0.22761098 , 0.24069424 , 0.253096 , 0.26491023 , 0.27621103 , 0.28705801 ,
0.29750003 , 0.30757767 , 0.31732515 , 0.32677158 , 0.33594201 , 0.34485814 ,
0.35353899 , 0.36200124 ]
K1 = [ 0.29666309 , 0.29330885 , 0.29042818 , 0.28787125 , 0.28555364 , 0.28342219 ,
0.28144091 , 0.27958406 , 0.27783249 , 0.27617149 , 0.27458948 , 0.27307714 ,
0.27162685 , 0.27023228 , 0.26888809 , 0.26758976 , 0.26633338 , 0.26511557 ,
0.26393339 , 0.26278425 ]
self . K = [ [ interp ( dt , dts , K0 ) ] , [ interp ( dt , dts , K1 ) ] ]
def laplacian_cdf ( x , mu , b ) :
b = max ( b , 1e-4 )
return math . exp ( - abs ( x - mu ) / b )
def match_vision_to_cluster ( v_ego , lead , clusters ) :
# match vision point to best statistical cluster match
offset_vision_dist = lead . x [ 0 ] - RADAR_TO_CAMERA
def prob ( c ) :
prob_d = laplacian_cdf ( c . dRel , offset_vision_dist , lead . xStd [ 0 ] )
prob_y = laplacian_cdf ( c . yRel , - lead . y [ 0 ] , lead . yStd [ 0 ] )
prob_v = laplacian_cdf ( c . vRel + v_ego , lead . v [ 0 ] , lead . vStd [ 0 ] )
# This is isn't exactly right, but good heuristic
return prob_d * prob_y * prob_v
cluster = max ( clusters , key = prob )
# if no 'sane' match is found return -1
# stationary radar points can be false positives
dist_sane = abs ( cluster . dRel - offset_vision_dist ) < max ( [ ( offset_vision_dist ) * .25 , 5.0 ] )
vel_sane = ( abs ( cluster . vRel + v_ego - lead . v [ 0 ] ) < 10 ) or ( v_ego + cluster . vRel > 3 )
if dist_sane and vel_sane :
return cluster
else :
return None
def get_lead ( v_ego , ready , clusters , lead_msg , low_speed_override = True ) :
# Determine leads, this is where the essential logic happens
if len ( clusters ) > 0 and ready and lead_msg . prob > .5 :
cluster = match_vision_to_cluster ( v_ego , lead_msg , clusters )
else :
cluster = None
lead_dict = { ' status ' : False }
if cluster is not None :
lead_dict = cluster . get_RadarState ( lead_msg . prob )
elif ( cluster is None ) and ready and ( lead_msg . prob > .5 ) :
lead_dict = Cluster ( ) . get_RadarState_from_vision ( lead_msg , v_ego )
if low_speed_override :
low_speed_clusters = [ c for c in clusters if c . potential_low_speed_lead ( v_ego ) ]
if len ( low_speed_clusters ) > 0 :
closest_cluster = min ( low_speed_clusters , key = lambda c : c . dRel )
# Only choose new cluster if it is actually closer than the previous one
if ( not lead_dict [ ' status ' ] ) or ( closest_cluster . dRel < lead_dict [ ' dRel ' ] ) :
lead_dict = closest_cluster . get_RadarState ( )
return lead_dict
class RadarD ( ) :
def __init__ ( self , radar_ts , delay = 0 ) :
self . current_time = 0
self . tracks = defaultdict ( dict )
self . kalman_params = KalmanParams ( radar_ts )
# v_ego
self . v_ego = 0.
self . v_ego_hist = deque ( [ 0 ] , maxlen = delay + 1 )
self . ready = False
def update ( self , sm , rr , enable_lead ) :
self . current_time = 1e-9 * max ( sm . logMonoTime . values ( ) )
if sm . updated [ ' carState ' ] :
self . v_ego = sm [ ' carState ' ] . vEgo
self . v_ego_hist . append ( self . v_ego )
if sm . updated [ ' modelV2 ' ] :
self . ready = True
ar_pts = { }
for pt in rr . points :
ar_pts [ pt . trackId ] = [ pt . dRel , pt . yRel , pt . vRel , pt . measured ]
# *** remove missing points from meta data ***
for ids in list ( self . tracks . keys ( ) ) :
if ids not in ar_pts :
self . tracks . pop ( ids , None )
# *** compute the tracks ***
for ids in ar_pts :
rpt = ar_pts [ ids ]
# align v_ego by a fixed time to align it with the radar measurement
v_lead = rpt [ 2 ] + self . v_ego_hist [ 0 ]
# create the track if it doesn't exist or it's a new track
if ids not in self . tracks :
self . tracks [ ids ] = Track ( v_lead , self . kalman_params )
self . tracks [ ids ] . update ( rpt [ 0 ] , rpt [ 1 ] , rpt [ 2 ] , v_lead , rpt [ 3 ] )
idens = list ( sorted ( self . tracks . keys ( ) ) )
track_pts = list ( [ self . tracks [ iden ] . get_key_for_cluster ( ) for iden in idens ] )
# If we have multiple points, cluster them
if len ( track_pts ) > 1 :
cluster_idxs = cluster_points_centroid ( track_pts , 2.5 )
clusters = [ None ] * ( max ( cluster_idxs ) + 1 )
for idx in range ( len ( track_pts ) ) :
cluster_i = cluster_idxs [ idx ]
if clusters [ cluster_i ] is None :
clusters [ cluster_i ] = Cluster ( )
clusters [ cluster_i ] . add ( self . tracks [ idens [ idx ] ] )
elif len ( track_pts ) == 1 :
# FIXME: cluster_point_centroid hangs forever if len(track_pts) == 1
cluster_idxs = [ 0 ]
clusters = [ Cluster ( ) ]
clusters [ 0 ] . add ( self . tracks [ idens [ 0 ] ] )
else :
clusters = [ ]
# if a new point, reset accel to the rest of the cluster
for idx in range ( len ( track_pts ) ) :
if self . tracks [ idens [ idx ] ] . cnt < = 1 :
aLeadK = clusters [ cluster_idxs [ idx ] ] . aLeadK
aLeadTau = clusters [ cluster_idxs [ idx ] ] . aLeadTau
self . tracks [ idens [ idx ] ] . reset_a_lead ( aLeadK , aLeadTau )
# *** publish radarState ***
dat = messaging . new_message ( ' radarState ' )
dat . valid = sm . all_alive_and_valid ( ) and len ( rr . errors ) == 0
radarState = dat . radarState
radarState . mdMonoTime = sm . logMonoTime [ ' modelV2 ' ]
radarState . canMonoTimes = list ( rr . canMonoTimes )
radarState . radarErrors = list ( rr . errors )
radarState . carStateMonoTime = sm . logMonoTime [ ' carState ' ]
if enable_lead :
if len ( sm [ ' modelV2 ' ] . leadsV3 ) > 1 :
radarState . leadOne = get_lead ( self . v_ego , self . ready , clusters , sm [ ' modelV2 ' ] . leadsV3 [ 0 ] , low_speed_override = True )
radarState . leadTwo = get_lead ( self . v_ego , self . ready , clusters , sm [ ' modelV2 ' ] . leadsV3 [ 1 ] , low_speed_override = False )
return dat
# fuses camera and radar data for best lead detection
def radard_thread ( sm = None , pm = None , can_sock = None ) :
config_realtime_process ( 5 if TICI else 2 , Priority . CTRL_LOW )
# wait for stats about the car to come in from controls
cloudlog . info ( " radard is waiting for CarParams " )
CP = car . CarParams . from_bytes ( Params ( ) . get ( " CarParams " , block = True ) )
cloudlog . info ( " radard got CarParams " )
# import the radar from the fingerprint
cloudlog . info ( " radard is importing %s " , CP . carName )
RadarInterface = importlib . import_module ( ' selfdrive.car. %s .radar_interface ' % CP . carName ) . RadarInterface
# *** setup messaging
if can_sock is None :
can_sock = messaging . sub_sock ( ' can ' )
if sm is None :
sm = messaging . SubMaster ( [ ' modelV2 ' , ' carState ' ] , ignore_avg_freq = [ ' modelV2 ' , ' carState ' ] ) # Can't check average frequency, since radar determines timing
if pm is None :
pm = messaging . PubMaster ( [ ' radarState ' , ' liveTracks ' ] )
RI = RadarInterface ( CP )
rk = Ratekeeper ( 1.0 / CP . radarTimeStep , print_delay_threshold = None )
RD = RadarD ( CP . radarTimeStep , RI . delay )
# TODO: always log leads once we can hide them conditionally
enable_lead = CP . openpilotLongitudinalControl or not CP . radarOffCan
while 1 :
can_strings = messaging . drain_sock_raw ( can_sock , wait_for_one = True )
rr = RI . update ( can_strings )
if rr is None :
continue
sm . update ( 0 )
dat = RD . update ( sm , rr , enable_lead )
dat . radarState . cumLagMs = - rk . remaining * 1000.
pm . send ( ' radarState ' , dat )
# *** publish tracks for UI debugging (keep last) ***
tracks = RD . tracks
dat = messaging . new_message ( ' liveTracks ' , len ( tracks ) )
for cnt , ids in enumerate ( sorted ( tracks . keys ( ) ) ) :
dat . liveTracks [ cnt ] = {
" trackId " : ids ,
" dRel " : float ( tracks [ ids ] . dRel ) ,
" yRel " : float ( tracks [ ids ] . yRel ) ,
" vRel " : float ( tracks [ ids ] . vRel ) ,
}
pm . send ( ' liveTracks ' , dat )
rk . monitor_time ( )
def main ( sm = None , pm = None , can_sock = None ) :
radard_thread ( sm , pm , can_sock )
if __name__ == " __main__ " :
main ( )