You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
			
				
					403 lines
				
				20 KiB
			
		
		
			
		
	
	
					403 lines
				
				20 KiB
			| 
											4 years ago
										 | import sys
 | ||
|  | import os
 | ||
|  | import json
 | ||
|  | import numpy as np
 | ||
|  | from datetime import datetime
 | ||
|  | 
 | ||
|  | from ctypes import POINTER, CDLL, c_void_p, c_int, cast, c_double, c_char_p
 | ||
|  | 
 | ||
|  | from copy import deepcopy
 | ||
|  | 
 | ||
|  | from .generate_c_code_explicit_ode import generate_c_code_explicit_ode
 | ||
|  | from .generate_c_code_implicit_ode import generate_c_code_implicit_ode
 | ||
|  | from .generate_c_code_gnsf import generate_c_code_gnsf
 | ||
|  | from .generate_c_code_discrete_dynamics import generate_c_code_discrete_dynamics
 | ||
|  | from .generate_c_code_constraint import generate_c_code_constraint
 | ||
|  | from .generate_c_code_nls_cost import generate_c_code_nls_cost
 | ||
|  | from .generate_c_code_external_cost import generate_c_code_external_cost
 | ||
|  | from .acados_ocp import AcadosOcp
 | ||
|  | from .acados_model import acados_model_strip_casadi_symbolics
 | ||
|  | from .utils import is_column, is_empty, casadi_length, render_template, acados_class2dict,\
 | ||
|  |      format_class_dict, ocp_check_against_layout, np_array_to_list, make_model_consistent,\
 | ||
|  |      set_up_imported_gnsf_model, get_acados_path
 | ||
|  | 
 | ||
|  | 
 | ||
|  | class AcadosOcpSolverFast:
 | ||
|  |     dlclose = CDLL(None).dlclose
 | ||
|  |     dlclose.argtypes = [c_void_p]
 | ||
|  | 
 | ||
|  |     def __init__(self, model_name, N, code_export_dir):
 | ||
|  | 
 | ||
|  |         self.solver_created = False
 | ||
|  |         self.N = N
 | ||
|  |         self.model_name = model_name
 | ||
|  | 
 | ||
|  |         self.shared_lib_name = f'{code_export_dir}/libacados_ocp_solver_{model_name}.so'
 | ||
|  | 
 | ||
|  |         # get shared_lib
 | ||
|  |         self.shared_lib = CDLL(self.shared_lib_name)
 | ||
|  | 
 | ||
|  |         # create capsule
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_create_capsule").restype = c_void_p
 | ||
|  |         self.capsule = getattr(self.shared_lib, f"{model_name}_acados_create_capsule")()
 | ||
|  | 
 | ||
|  |         # create solver
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_create").argtypes = [c_void_p]
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_create").restype = c_int
 | ||
|  |         assert getattr(self.shared_lib, f"{model_name}_acados_create")(self.capsule)==0
 | ||
|  |         self.solver_created = True
 | ||
|  | 
 | ||
|  |         # get pointers solver
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_opts").argtypes = [c_void_p]
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_opts").restype = c_void_p
 | ||
|  |         self.nlp_opts = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_opts")(self.capsule)
 | ||
|  | 
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_dims").argtypes = [c_void_p]
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_dims").restype = c_void_p
 | ||
|  |         self.nlp_dims = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_dims")(self.capsule)
 | ||
|  | 
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_config").argtypes = [c_void_p]
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_config").restype = c_void_p
 | ||
|  |         self.nlp_config = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_config")(self.capsule)
 | ||
|  | 
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_out").argtypes = [c_void_p]
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_out").restype = c_void_p
 | ||
|  |         self.nlp_out = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_out")(self.capsule)
 | ||
|  | 
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_in").argtypes = [c_void_p]
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_in").restype = c_void_p
 | ||
|  |         self.nlp_in = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_in")(self.capsule)
 | ||
|  | 
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_solver").argtypes = [c_void_p]
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_get_nlp_solver").restype = c_void_p
 | ||
|  |         self.nlp_solver = getattr(self.shared_lib, f"{model_name}_acados_get_nlp_solver")(self.capsule)
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def solve(self):
 | ||
|  |         """
 | ||
|  |         Solve the ocp with current input.
 | ||
|  |         """
 | ||
|  |         model_name = self.model_name
 | ||
|  | 
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_solve").argtypes = [c_void_p]
 | ||
|  |         getattr(self.shared_lib, f"{model_name}_acados_solve").restype = c_int
 | ||
|  |         status = getattr(self.shared_lib, f"{model_name}_acados_solve")(self.capsule)
 | ||
|  |         return status
 | ||
|  | 
 | ||
|  |     def cost_set(self, start_stage_, field_, value_, api='warn'):
 | ||
|  |       self.cost_set_slice(start_stage_, start_stage_+1, field_, value_[None], api='warn')
 | ||
|  |       return
 | ||
|  | 
 | ||
|  |     def cost_set_slice(self, start_stage_, end_stage_, field_, value_, api='warn'):
 | ||
|  |         """
 | ||
|  |         Set numerical data in the cost module of the solver.
 | ||
|  | 
 | ||
|  |             :param stage: integer corresponding to shooting node
 | ||
|  |             :param field: string, e.g. 'yref', 'W', 'ext_cost_num_hess'
 | ||
|  |             :param value: of appropriate size
 | ||
|  |         """
 | ||
|  |         # cast value_ to avoid conversion issues
 | ||
|  |         if isinstance(value_, (float, int)):
 | ||
|  |             value_ = np.array([value_])
 | ||
|  |         value_ = np.ascontiguousarray(np.copy(value_), dtype=np.float64)
 | ||
|  |         field = field_
 | ||
|  |         field = field.encode('utf-8')
 | ||
|  |         dim = np.product(value_.shape[1:])
 | ||
|  | 
 | ||
|  |         start_stage = c_int(start_stage_)
 | ||
|  |         end_stage = c_int(end_stage_)
 | ||
|  |         self.shared_lib.ocp_nlp_cost_dims_get_from_attr.argtypes = \
 | ||
|  |             [c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
 | ||
|  |         self.shared_lib.ocp_nlp_cost_dims_get_from_attr.restype = c_int
 | ||
|  | 
 | ||
|  |         dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc)
 | ||
|  |         dims_data = cast(dims.ctypes.data, POINTER(c_int))
 | ||
|  | 
 | ||
|  |         self.shared_lib.ocp_nlp_cost_dims_get_from_attr(self.nlp_config,
 | ||
|  |             self.nlp_dims, self.nlp_out, start_stage_, field, dims_data)
 | ||
|  | 
 | ||
|  |         value_shape = value_.shape
 | ||
|  |         expected_shape = tuple(np.concatenate([np.array([end_stage_ - start_stage_]), dims]))
 | ||
|  |         if len(value_shape) == 2:
 | ||
|  |             value_shape = (value_shape[0], value_shape[1], 0)
 | ||
|  | 
 | ||
|  |         elif len(value_shape) == 3:
 | ||
|  |             if api=='old':
 | ||
|  |                 pass
 | ||
|  |             elif api=='warn':
 | ||
|  |                 if not np.all(np.ravel(value_, order='F')==np.ravel(value_, order='K')):
 | ||
|  |                     raise Exception("Ambiguity in API detected.\n"
 | ||
|  |                                     "Are you making an acados model from scrach? Add api='new' to cost_set and carry on.\n"
 | ||
|  |                                     "Are you seeing this error suddenly in previously running code? Read on.\n"
 | ||
|  |                                     "  You are relying on a now-fixed bug in cost_set for field '{}'.\n".format(field_) +
 | ||
|  |                                     "  acados_template now correctly passes on any matrices to acados in column major format.\n" +
 | ||
|  |                                     "  Two options to fix this error: \n" +
 | ||
|  |                                     "   * Add api='old' to cost_set to restore old incorrect behaviour\n" +
 | ||
|  |                                     "   * Add api='new' to cost_set and remove any unnatural manipulation of the value argument " +
 | ||
|  |                                     "such as non-mathematical transposes, reshaping, casting to fortran order, etc... " +
 | ||
|  |                                     "If there is no such manipulation, then you have probably been getting an incorrect solution before.")
 | ||
|  |                 # Get elements in column major order
 | ||
|  |                 value_ = np.ravel(value_, order='F')
 | ||
|  |             elif api=='new':
 | ||
|  |                 # Get elements in column major order
 | ||
|  |                 value_ = np.ravel(value_, order='F')
 | ||
|  |             else:
 | ||
|  |                 raise Exception("Unknown api: '{}'".format(api))
 | ||
|  | 
 | ||
|  |         if value_shape != expected_shape:
 | ||
|  |             raise Exception('AcadosOcpSolver.cost_set(): mismatching dimension',
 | ||
|  |                             ' for field "{}" with dimension {} (you have {})'.format(
 | ||
|  |                                field_, expected_shape, value_shape))
 | ||
|  | 
 | ||
|  | 
 | ||
|  |         value_data = cast(value_.ctypes.data, POINTER(c_double))
 | ||
|  |         value_data_p = cast((value_data), c_void_p)
 | ||
|  | 
 | ||
|  |         self.shared_lib.ocp_nlp_cost_model_set_slice.argtypes = \
 | ||
|  |             [c_void_p, c_void_p, c_void_p, c_int, c_int, c_char_p, c_void_p, c_int]
 | ||
|  |         self.shared_lib.ocp_nlp_cost_model_set_slice(self.nlp_config,
 | ||
|  |             self.nlp_dims, self.nlp_in, start_stage, end_stage, field, value_data_p, dim)
 | ||
|  |         return
 | ||
|  | 
 | ||
|  |     def constraints_set(self, start_stage_, field_, value_, api='warn'):
 | ||
|  |       self.constraints_set_slice(start_stage_, start_stage_+1, field_, value_[None], api='warn')
 | ||
|  |       return
 | ||
|  | 
 | ||
|  |     def constraints_set_slice(self, start_stage_, end_stage_, field_, value_, api='warn'):
 | ||
|  |         """
 | ||
|  |         Set numerical data in the constraint module of the solver.
 | ||
|  | 
 | ||
|  |             :param stage: integer corresponding to shooting node
 | ||
|  |             :param field: string in ['lbx', 'ubx', 'lbu', 'ubu', 'lg', 'ug', 'lh', 'uh', 'uphi']
 | ||
|  |             :param value: of appropriate size
 | ||
|  |         """
 | ||
|  |         # cast value_ to avoid conversion issues
 | ||
|  |         if isinstance(value_, (float, int)):
 | ||
|  |             value_ = np.array([value_])
 | ||
|  |         value_ = value_.astype(float)
 | ||
|  | 
 | ||
|  |         field = field_
 | ||
|  |         field = field.encode('utf-8')
 | ||
|  |         dim = np.product(value_.shape[1:])
 | ||
|  | 
 | ||
|  |         start_stage = c_int(start_stage_)
 | ||
|  |         end_stage = c_int(end_stage_)
 | ||
|  |         self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.argtypes = \
 | ||
|  |             [c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
 | ||
|  |         self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.restype = c_int
 | ||
|  | 
 | ||
|  |         dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc)
 | ||
|  |         dims_data = cast(dims.ctypes.data, POINTER(c_int))
 | ||
|  | 
 | ||
|  |         self.shared_lib.ocp_nlp_constraint_dims_get_from_attr(self.nlp_config, \
 | ||
|  |             self.nlp_dims, self.nlp_out, start_stage_, field, dims_data)
 | ||
|  | 
 | ||
|  |         value_shape = value_.shape
 | ||
|  |         expected_shape = tuple(np.concatenate([np.array([end_stage_ - start_stage_]), dims]))
 | ||
|  |         if len(value_shape) == 2:
 | ||
|  |             value_shape = (value_shape[0], value_shape[1], 0)
 | ||
|  |         elif len(value_shape) == 3:
 | ||
|  |             if api=='old':
 | ||
|  |                 pass
 | ||
|  |             elif api=='warn':
 | ||
|  |                 if not np.all(np.ravel(value_, order='F')==np.ravel(value_, order='K')):
 | ||
|  |                     raise Exception("Ambiguity in API detected.\n"
 | ||
|  |                                     "Are you making an acados model from scrach? Add api='new' to constraints_set and carry on.\n"
 | ||
|  |                                     "Are you seeing this error suddenly in previously running code? Read on.\n"
 | ||
|  |                                     "  You are relying on a now-fixed bug in constraints_set for field '{}'.\n".format(field_) +
 | ||
|  |                                     "  acados_template now correctly passes on any matrices to acados in column major format.\n" +
 | ||
|  |                                     "  Two options to fix this error: \n" +
 | ||
|  |                                     "   * Add api='old' to constraints_set to restore old incorrect behaviour\n" +
 | ||
|  |                                     "   * Add api='new' to constraints_set and remove any unnatural manipulation of the value argument " +
 | ||
|  |                                     "such as non-mathematical transposes, reshaping, casting to fortran order, etc... " +
 | ||
|  |                                     "If there is no such manipulation, then you have probably been getting an incorrect solution before.")
 | ||
|  |                 # Get elements in column major order
 | ||
|  |                 value_ = np.ravel(value_, order='F')
 | ||
|  |             elif api=='new':
 | ||
|  |                 # Get elements in column major order
 | ||
|  |                 value_ = np.ravel(value_, order='F')
 | ||
|  |             else:
 | ||
|  |                 raise Exception("Unknown api: '{}'".format(api))
 | ||
|  |         if value_shape != expected_shape:
 | ||
|  |             raise Exception('AcadosOcpSolver.constraints_set(): mismatching dimension' \
 | ||
|  |                 ' for field "{}" with dimension {} (you have {})'.format(field_, expected_shape, value_shape))
 | ||
|  | 
 | ||
|  |         value_data = cast(value_.ctypes.data, POINTER(c_double))
 | ||
|  |         value_data_p = cast((value_data), c_void_p)
 | ||
|  | 
 | ||
|  |         self.shared_lib.ocp_nlp_constraints_model_set_slice.argtypes = \
 | ||
|  |             [c_void_p, c_void_p, c_void_p, c_int, c_int, c_char_p, c_void_p, c_int]
 | ||
|  |         self.shared_lib.ocp_nlp_constraints_model_set_slice(self.nlp_config, \
 | ||
|  |             self.nlp_dims, self.nlp_in, start_stage, end_stage, field, value_data_p, dim)
 | ||
|  |         return
 | ||
|  | 
 | ||
|  |     # Note: this function should not be used anymore, better use cost_set, constraints_set
 | ||
|  |     def set(self, stage_, field_, value_):
 | ||
|  |         """
 | ||
|  |         Set numerical data inside the solver.
 | ||
|  | 
 | ||
|  |             :param stage: integer corresponding to shooting node
 | ||
|  |             :param field: string in ['x', 'u', 'pi', 'lam', 't', 'p']
 | ||
|  | 
 | ||
|  |             .. note:: regarding lam, t: \n
 | ||
|  |                     the inequalities are internally organized in the following order: \n
 | ||
|  |                     [ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
 | ||
|  |                       lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
 | ||
|  | 
 | ||
|  |             .. note:: pi: multipliers for dynamics equality constraints \n
 | ||
|  |                       lam: multipliers for inequalities \n
 | ||
|  |                       t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
 | ||
|  |                       sl: slack variables of soft lower inequality constraints \n
 | ||
|  |                       su: slack variables of soft upper inequality constraints \n
 | ||
|  |         """
 | ||
|  |         cost_fields = ['y_ref', 'yref']
 | ||
|  |         constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu']
 | ||
|  |         out_fields = ['x', 'u', 'pi', 'lam', 't', 'z']
 | ||
|  |         mem_fields = ['sl', 'su']
 | ||
|  | 
 | ||
|  |         # cast value_ to avoid conversion issues
 | ||
|  |         if isinstance(value_, (float, int)):
 | ||
|  |             value_ = np.array([value_])
 | ||
|  |         value_ = value_.astype(float)
 | ||
|  | 
 | ||
|  |         model_name = self.model_name
 | ||
|  | 
 | ||
|  |         field = field_
 | ||
|  |         field = field.encode('utf-8')
 | ||
|  | 
 | ||
|  |         stage = c_int(stage_)
 | ||
|  | 
 | ||
|  |         # treat parameters separately
 | ||
|  |         if field_ == 'p':
 | ||
|  |             getattr(self.shared_lib, f"{model_name}_acados_update_params").argtypes = [c_void_p, c_int, POINTER(c_double)]
 | ||
|  |             getattr(self.shared_lib, f"{model_name}_acados_update_params").restype = c_int
 | ||
|  | 
 | ||
|  |             value_data = cast(value_.ctypes.data, POINTER(c_double))
 | ||
|  | 
 | ||
|  |             assert getattr(self.shared_lib, f"{model_name}_acados_update_params")(self.capsule, stage, value_data, value_.shape[0])==0
 | ||
|  |         else:
 | ||
|  |             if field_ not in constraints_fields + cost_fields + out_fields + mem_fields:
 | ||
|  |                 raise Exception("AcadosOcpSolver.set(): {} is not a valid argument.\
 | ||
|  |                     \nPossible values are {}. Exiting.".format(field, \
 | ||
|  |                     constraints_fields + cost_fields + out_fields + ['p']))
 | ||
|  | 
 | ||
|  |             self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \
 | ||
|  |                 [c_void_p, c_void_p, c_void_p, c_int, c_char_p]
 | ||
|  |             self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int
 | ||
|  | 
 | ||
|  |             dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \
 | ||
|  |                 self.nlp_dims, self.nlp_out, stage_, field)
 | ||
|  | 
 | ||
|  |             if value_.shape[0] != dims:
 | ||
|  |                 msg = 'AcadosOcpSolver.set(): mismatching dimension for field "{}" '.format(field_)
 | ||
|  |                 msg += 'with dimension {} (you have {})'.format(dims, value_.shape)
 | ||
|  |                 raise Exception(msg)
 | ||
|  | 
 | ||
|  |             value_data = cast(value_.ctypes.data, POINTER(c_double))
 | ||
|  |             value_data_p = cast((value_data), c_void_p)
 | ||
|  | 
 | ||
|  |             if field_ in constraints_fields:
 | ||
|  |                 self.shared_lib.ocp_nlp_constraints_model_set.argtypes = \
 | ||
|  |                     [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
 | ||
|  |                 self.shared_lib.ocp_nlp_constraints_model_set(self.nlp_config, \
 | ||
|  |                     self.nlp_dims, self.nlp_in, stage, field, value_data_p)
 | ||
|  |             elif field_ in cost_fields:
 | ||
|  |                 self.shared_lib.ocp_nlp_cost_model_set.argtypes = \
 | ||
|  |                     [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
 | ||
|  |                 self.shared_lib.ocp_nlp_cost_model_set(self.nlp_config, \
 | ||
|  |                     self.nlp_dims, self.nlp_in, stage, field, value_data_p)
 | ||
|  |             elif field_ in out_fields:
 | ||
|  |                 self.shared_lib.ocp_nlp_out_set.argtypes = \
 | ||
|  |                     [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
 | ||
|  |                 self.shared_lib.ocp_nlp_out_set(self.nlp_config, \
 | ||
|  |                     self.nlp_dims, self.nlp_out, stage, field, value_data_p)
 | ||
|  |             elif field_ in mem_fields:
 | ||
|  |                 self.shared_lib.ocp_nlp_set.argtypes = \
 | ||
|  |                     [c_void_p, c_void_p, c_int, c_char_p, c_void_p]
 | ||
|  |                 self.shared_lib.ocp_nlp_set(self.nlp_config, \
 | ||
|  |                     self.nlp_solver, stage, field, value_data_p)
 | ||
|  |         return
 | ||
|  | 
 | ||
|  | 
 | ||
|  |     def get_slice(self, start_stage_, end_stage_, field_):
 | ||
|  |         """
 | ||
|  |         Get the last solution of the solver:
 | ||
|  | 
 | ||
|  |             :param start_stage: integer corresponding to shooting node that indicates start of slice
 | ||
|  |             :param end_stage: integer corresponding to shooting node that indicates end of slice
 | ||
|  |             :param field: string in ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su',]
 | ||
|  | 
 | ||
|  |             .. note:: regarding lam, t: \n
 | ||
|  |                     the inequalities are internally organized in the following order: \n
 | ||
|  |                     [ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
 | ||
|  |                       lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
 | ||
|  | 
 | ||
|  |             .. note:: pi: multipliers for dynamics equality constraints \n
 | ||
|  |                       lam: multipliers for inequalities \n
 | ||
|  |                       t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
 | ||
|  |                       sl: slack variables of soft lower inequality constraints \n
 | ||
|  |                       su: slack variables of soft upper inequality constraints \n
 | ||
|  |         """
 | ||
|  |         out_fields = ['x', 'u', 'z', 'pi', 'lam', 't']
 | ||
|  |         mem_fields = ['sl', 'su']
 | ||
|  |         field = field_
 | ||
|  |         field = field.encode('utf-8')
 | ||
|  | 
 | ||
|  |         if (field_ not in out_fields + mem_fields):
 | ||
|  |             raise Exception('AcadosOcpSolver.get_slice(): {} is an invalid argument.\
 | ||
|  |                     \n Possible values are {}. Exiting.'.format(field_, out_fields))
 | ||
|  | 
 | ||
|  |         if not isinstance(start_stage_, int):
 | ||
|  |             raise Exception('AcadosOcpSolver.get_slice(): stage index must be Integer.')
 | ||
|  | 
 | ||
|  |         if not isinstance(end_stage_, int):
 | ||
|  |             raise Exception('AcadosOcpSolver.get_slice(): stage index must be Integer.')
 | ||
|  | 
 | ||
|  |         if start_stage_ >= end_stage_:
 | ||
|  |             raise Exception('AcadosOcpSolver.get_slice(): end stage index must be larger than start stage index')
 | ||
|  | 
 | ||
|  |         if start_stage_ < 0 or end_stage_ > self.N + 1:
 | ||
|  |             raise Exception('AcadosOcpSolver.get_slice(): stage index must be in [0, N], got: {}.'.format(self.N))
 | ||
|  |         self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \
 | ||
|  |             [c_void_p, c_void_p, c_void_p, c_int, c_char_p]
 | ||
|  |         self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int
 | ||
|  | 
 | ||
|  |         dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \
 | ||
|  |             self.nlp_dims, self.nlp_out, start_stage_, field)
 | ||
|  | 
 | ||
|  |         out = np.ascontiguousarray(np.zeros((end_stage_ - start_stage_, dims)), dtype=np.float64)
 | ||
|  |         out_data = cast(out.ctypes.data, POINTER(c_double))
 | ||
|  | 
 | ||
|  |         if (field_ in out_fields):
 | ||
|  |             self.shared_lib.ocp_nlp_out_get_slice.argtypes = \
 | ||
|  |                 [c_void_p, c_void_p, c_void_p, c_int, c_int, c_char_p, c_void_p]
 | ||
|  |             self.shared_lib.ocp_nlp_out_get_slice(self.nlp_config, \
 | ||
|  |                 self.nlp_dims, self.nlp_out, start_stage_, end_stage_, field, out_data)
 | ||
|  |         elif field_ in mem_fields:
 | ||
|  |             self.shared_lib.ocp_nlp_get_at_stage.argtypes = \
 | ||
|  |                 [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
 | ||
|  |             self.shared_lib.ocp_nlp_get_at_stage(self.nlp_config, \
 | ||
|  |                 self.nlp_dims, self.nlp_solver, start_stage_, end_stage_, field, out_data)
 | ||
|  | 
 | ||
|  |         return out
 | ||
|  | 
 | ||
|  |     def get_cost(self):
 | ||
|  |         """
 | ||
|  |         Returns the cost value of the current solution.
 | ||
|  |         """
 | ||
|  |         # compute cost internally
 | ||
|  |         self.shared_lib.ocp_nlp_eval_cost.argtypes = [c_void_p, c_void_p, c_void_p]
 | ||
|  |         self.shared_lib.ocp_nlp_eval_cost(self.nlp_solver, self.nlp_in, self.nlp_out)
 | ||
|  | 
 | ||
|  |         # create output array
 | ||
|  |         out = np.ascontiguousarray(np.zeros((1,)), dtype=np.float64)
 | ||
|  |         out_data = cast(out.ctypes.data, POINTER(c_double))
 | ||
|  | 
 | ||
|  |         # call getter
 | ||
|  |         self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p]
 | ||
|  | 
 | ||
|  |         field = "cost_value".encode('utf-8')
 | ||
|  |         self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
 | ||
|  | 
 | ||
|  |         return out[0]
 |