openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

54 lines
3.0 KiB

# pip install gdown
# Downloads the 2020 wikipedia dataset used for MLPerf BERT training
import os, hashlib
from pathlib import Path
import tarfile
import gdown
from tqdm import tqdm
from tinygrad.helpers import getenv
def gdrive_download(url:str, path:str):
if not os.path.exists(path): gdown.download(url, path)
def wikipedia_uncompress_and_extract(file:str, path:str, small:bool=False):
if not os.path.exists(os.path.join(path, "results4")):
print("Uncompressing and extracting file...")
with tarfile.open(file, 'r:gz') as tar:
tar.extractall(path=path)
os.remove(file)
if small:
for member in tar.getmembers(): tar.extract(path=path, member=member)
else:
for member in tqdm(iterable=tar.getmembers(), total=len(tar.getmembers())): tar.extract(path=path, member=member)
def verify_checksum(folder_path:str, checksum_path:str):
print("Verifying checksums...")
with open(checksum_path, 'r') as f:
for line in f:
expected_checksum, folder_name = line.split()
file_path = os.path.join(folder_path, folder_name[2:]) # remove './' from the start of the folder name
hasher = hashlib.md5()
with open(file_path, 'rb') as f:
for buf in iter(lambda: f.read(4096), b''): hasher.update(buf)
if hasher.hexdigest() != expected_checksum:
raise ValueError(f"Checksum does not match for file: {file_path}")
print("All checksums match.")
def download_wikipedia(path:str):
# Links from: https://github.com/mlcommons/training/blob/master/language_model/tensorflow/bert/dataset.md
os.makedirs(path, exist_ok=True)
gdrive_download("https://drive.google.com/uc?id=1fbGClQMi2CoMv7fwrwTC5YYPooQBdcFW", os.path.join(path, "bert_config.json"))
gdrive_download("https://drive.google.com/uc?id=1USK108J6hMM_d27xCHi738qBL8_BT1u1", os.path.join(path, "vocab.txt"))
gdrive_download("https://drive.google.com/uc?id=1chiTBljF0Eh1U5pKs6ureVHgSbtU8OG_", os.path.join(path, "model.ckpt-28252.data-00000-of-00001"))
gdrive_download("https://drive.google.com/uc?id=1Q47V3K3jFRkbJ2zGCrKkKk-n0fvMZsa0", os.path.join(path, "model.ckpt-28252.index"))
gdrive_download("https://drive.google.com/uc?id=1vAcVmXSLsLeQ1q7gvHnQUSth5W_f_pwv", os.path.join(path, "model.ckpt-28252.meta"))
with open(os.path.join(path, "checkpoint"), "w") as f: f.write('model_checkpoint_path: "model.ckpt-28252"\nall_model_checkpoint_paths: "model.ckpt-28252"')
if getenv("WIKI_TRAIN", 0):
gdrive_download("https://drive.google.com/uc?id=1tmMgLwoBvbEJEHXh77sqrXYw5RpqT8R_", os.path.join(path, "bert_reference_results_text_md5.txt"))
gdrive_download("https://drive.google.com/uc?id=14xV2OUGSQDG_yDBrmbSdcDC-QGeqpfs_", os.path.join(path, "results_text.tar.gz"))
wikipedia_uncompress_and_extract(os.path.join(path, "results_text.tar.gz"), path)
if getenv("VERIFY_CHECKSUM", 0):
verify_checksum(os.path.join(path, "results4"), os.path.join(path, "bert_reference_results_text_md5.txt"))
if __name__ == "__main__":
download_wikipedia(getenv("BASEDIR", os.path.join(Path(__file__).parent / "wiki")))