openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

585 lines
32 KiB

from dataclasses import dataclass
from tinygrad.uop.ops import UOp, Ops, GroupOp, PatternMatcher, UPat, graph_rewrite, graph_rewrite_map, identity_element, resolve, can_pad, sint
from tinygrad.uop.ops import track_rewrites, _substitute
from tinygrad.uop.spec import type_verify, tensor_uop_spec
from tinygrad.codegen.lowerer import get_contraction_with_reduce
from tinygrad.uop.symbolic import symbolic_simple
from tinygrad.helpers import Metadata, all_int, all_same, colored, prod, dedup, unwrap, getenv, pluralize
from tinygrad.helpers import FUSE_CONV_BW, FUSE_ARANGE, DEBUG, DONT_REALIZE_EXPAND, DONT_GROUP_REDUCES, SPLIT_REDUCEOP
from tinygrad.dtype import ImageDType
from tinygrad.engine.multi import multi_pm, replace_allreduce
from tinygrad.shape.shapetracker import ShapeTracker
from tinygrad.shape.view import View, strides_for_shape
# creation can recurse a lot
import sys
sys.setrecursionlimit(10000)
# **** schedule simplifier
def simplify_stride0_reduce(reduce:UOp, x:UOp):
# must be unmasked (NOTE: can be relaxed if not masked on stride 0 axis)
if any(v.mask is not None for v in unwrap(x.st).views): return None
# must have all stride 0 in the relevant axis (NOTE: can do partial)
if not all(unwrap(x.st).views[-1].strides[axis] == 0 for axis in reduce.arg[1]) or not all_int(x.shape): return None
prshape = prod(x.shape[i] for i in reduce.arg[1])
ret = x.shrink(tuple((0,s) if i not in reduce.arg[1] else (0,1) for i,s in enumerate(x.shape)))
match reduce.arg[0]:
case Ops.ADD: return ret*prshape
case Ops.MUL: return ret.pow(prshape)
case Ops.MAX: return ret # NOTE: Ops.MAX is passthrough
def split_reduceop(reduce:UOp, x:UOp):
if not SPLIT_REDUCEOP or not all_int(x.shape) or (prod(x.shape)//prod(reduce.shape))<getenv("REDUCEOP_SPLIT_THRESHOLD", 32768): return None
# if there are few globals, make some reduces into globals by splitting into two kernels
# cap output buffer to 2**22: heuristic number of global outputs to achieve max occupancy with enough locals+upcasts for gemm
# ~2**10 should be enough if GROUP is used
# 256 split maximum should be "negligible reduce" for low prod(reduce.shape), 8 split minimum.
# split is moved to the end to provide maximum locality for the second phase reduce.
real_strides = unwrap(x.st).real_strides(ignore_valid=True)
if not (split_candidates:=[(i,d) for i in reduce.arg[1] for d in range(min(256,2**getenv("REDUCEOP_SPLIT_SIZE",22)//prod(reduce.shape)),8-1,-1)
if x.shape[i]%d==0 and real_strides[i]!=0]): return None
dim_to_split, divisor = split_candidates[0]
splitted_shape = x.shape[:dim_to_split]+(divisor,)+(x.shape[dim_to_split]//divisor,)+x.shape[dim_to_split+1:]
splitted = x.reshape(splitted_shape).permute(tuple([d for d in range(len(splitted_shape)) if d!=dim_to_split]+[dim_to_split]))
if DEBUG >= 3: print(f"split {divisor}: {x.shape} -> {splitted.shape} -> {reduce.shape}")
# reduce original axes, then split
return splitted.r(*reduce.arg).r(reduce.arg[0], (len(reduce.shape),)).reshape(reduce.shape)
def copy_reorder_view(copy:UOp, view:UOp, base:UOp):
if prod(view.shape) < prod(base.shape): return view.contiguous().copy_to_device(copy.device)
return base.copy_to_device(copy.device).view(view.arg)
ALWAYS_CONTIGUOUS = {Ops.CONTIGUOUS, Ops.ASSIGN, Ops.COPY, Ops.BUFFER, Ops.BUFFER_VIEW,
Ops.CONST, Ops.BIND, Ops.DEVICE, Ops.MSELECT, Ops.MSTACK, Ops.GBARRIER}
sym = symbolic_simple+PatternMatcher([
# UOp with size 0 is zero
(UPat(GroupOp.All-{Ops.SINK}, name="root"), lambda root: root.const_like(0) if root.base.st is not None and root.size == 0 \
and not (root.base.op is Ops.CONST and root.base.arg == 0) else None),
# DETACH and CONTIGUOUS_BACKWARD are NOOPs here
(UPat((Ops.DETACH, Ops.CONTIGUOUS_BACKWARD), name="x"), lambda x: x.src[0]),
# reduce of size 0 is the identity element
(UPat(Ops.REDUCE_AXIS, name="reduce", src=(UPat.var("x"),)),
lambda reduce,x: reduce.const_like(identity_element(reduce.arg[0], reduce.dtype)) if x.size == 0 and reduce.size != 0 else None),
# reduce on stride 0 is collapsed
(UPat(Ops.REDUCE_AXIS, name="reduce", src=(UPat.var("x"),)), simplify_stride0_reduce),
# split_reduceop
(UPat(Ops.REDUCE_AXIS, name="reduce", src=(UPat.var("x"),)), split_reduceop),
# COPY(CONST) creates a new CONST on the destination device
(UPat(Ops.COPY, name="root", src=(UPat.cvar("x"), UPat(Ops.DEVICE))), lambda root,x: root.const_like(x.arg)),
# non device changing COPY is a NOOP
(UPat(Ops.COPY, name="c", src=(UPat.var("x"), UPat(Ops.DEVICE))), lambda c,x: x if c.device == x.device else None),
# store a shrink before COPY, otherwise view after the COPY
(UPat(Ops.COPY, src=(UPat(Ops.VIEW, src=(UPat.var("base"),), name="view"), UPat(Ops.DEVICE)), name="copy"), copy_reorder_view),
# remove cast to image when it's already a contiguous image
(UPat(Ops.CAST, name="cast", src=(UPat(Ops.VIEW, name="vm", src=(UPat(Ops.CONTIGUOUS, name="base"),)),)),
lambda cast,base,vm: base.view(vm.st) if isinstance(cast.dtype, ImageDType) and isinstance(base.dtype, ImageDType) else None),
# CAST before masking constants
(UPat.cvar("x").view().cast(name="c"), lambda x,c: x.cast(c.dtype).view(c.src[0].arg)),
# make things that can't be images not images
(UPat(GroupOp.All-{Ops.BUFFER, Ops.VIEW, Ops.CONST, Ops.DEVICE}, name="u"), lambda u: u.replace(dtype=dt.base) if isinstance(dt:=u.dtype,ImageDType)
and (prod(u.shape) != prod(dt.shape) or not any(u.shape[x]%4 == 0 for x in u.st.unit_stride_axes())) else None),
# remove contiguous if we can just view the buffer
(UPat(Ops.CONTIGUOUS, name="root", src=(UPat(Ops.VIEW, name="view", src=(UPat(Ops.BUFFER, name="buf"),)),)),
lambda root,view,buf: view if view.st.contiguous and view.size == buf.size else None),
# contiguous/buffer/copy/assign is already contiguous
(UPat(Ops.CONTIGUOUS, name="root", src=(UPat((Ops.CONTIGUOUS, Ops.BUFFER, Ops.COPY, Ops.ASSIGN)),)), lambda root: root.src[0]),
# substitute BITCAST/CONTIGUOUS with BUFFER_VIEW on DISK
(UPat((Ops.BITCAST, Ops.CONTIGUOUS), src=(UPat.var("x"),), name="t"), lambda x,t: UOp(Ops.BUFFER_VIEW, t.dtype, (x.base,),
(t.size, x.st.views[0].offset)).reshape(t.shape) if isinstance(x.device, str) and x.device.startswith("DISK") else None),
# double ASSIGN to same target is one ASSIGN
(UPat(Ops.ASSIGN, src=(UPat.var("t"), UPat(Ops.ASSIGN, src=(UPat.var("t"), UPat.var("x"))))), lambda x,t: t.assign(x.contiguous())),
# ASSIGN to unrealized replaces the UOp
(UPat(Ops.ASSIGN, src=(UPat.var("t"), UPat.var("x"))), lambda x,t: x.contiguous() if t.base.op not in {Ops.BUFFER, Ops.BUFFER_VIEW} and
not (t.base.op is Ops.MSTACK and all(x.op is Ops.BUFFER for x in t.base.src)) else None),
# put CAST to smaller dtype before EXPAND
(UPat(Ops.CAST, name="cast", src=(UPat(Ops.VIEW, name="vm"),)), lambda cast,vm: vm.base.cast(cast.dtype).view(vm.st)
if cast.dtype.itemsize <= vm.dtype.itemsize and resolve(prod(vm.shape) > vm.st.real_size()) else None),
# put UnaryOps before EXPANDs, if it can fuse with the input
(UPat(GroupOp.Unary, src=(UPat(Ops.VIEW, src=(UPat(GroupOp.All-ALWAYS_CONTIGUOUS, name="inp"),), name="v"),), name="alu"),
lambda inp,v,alu: inp.alu(alu.op).view(v.st) if resolve(prod(alu.shape) > v.st.real_size()) else None),
])
# support for using a contiguous permuted view instead of the parent view if one exists
def found_contiguous(ctx:dict[UOp, UOp], contig:UOp, src:UOp):
if (sti:=unwrap(src.st).invert(src.base.shape)) is not None: ctx[src.base] = contig.view(sti)
replace_contiguous = PatternMatcher([
(UPat(Ops.CONTIGUOUS, src=(UPat(Ops.VIEW, name="src"),), name="contig"), found_contiguous),
(UPat(GroupOp.ALU, name="alu"), lambda ctx,alu: alu.replace(src=new_src) if (new_src:=tuple(ctx.get(s, s) for s in alu.src)) != alu.src else None),
])
# **** Grouper decides which of the UOps realize
def realize(ctx:dict[UOp, None], tr:UOp) -> None: ctx[tr] = None
def realize_parents(ctx:dict[UOp, None], rb:UOp) -> None:
for s in rb.src:
if s.op not in ALWAYS_CONTIGUOUS: ctx[s] = None
def realize_before_view(ctx:dict[UOp, None], view:UOp, tr:UOp) -> None:
st = unwrap(view.st)
# always realize unsafe pad ops before masked view
if any(v.mask is not None for v in st.views) and not can_pad(tr, ctx): return realize(ctx, tr)
# fold simple pads
if len(st.views) == 1 and (m:=st.views[-1].mask) is not None and all_int(tr.shape) and resolve(prod(tr.shape) >= prod([y-x for x,y in m])): return
# realize before expand
if resolve(prod(tr.shape) < prod(st.shape)) and not DONT_REALIZE_EXPAND: return realize(ctx, tr)
do_realize = PatternMatcher([
# always realize SINK parents
(UPat(Ops.SINK, name="s"), lambda ctx,s: ctx.update((x.base, None) for x in s.src if x.base.op not in ALWAYS_CONTIGUOUS)),
# always realize ASSIGN/CONTIGUOUS/GroupOp.Meta
(UPat({Ops.ASSIGN, Ops.CONTIGUOUS, *GroupOp.Meta}, name="tr"), realize),
# realize before expand or unsafe pad ops
(UPat(Ops.VIEW, src=(UPat(GroupOp.All-ALWAYS_CONTIGUOUS, name="tr"),), name="view"), realize_before_view),
# realize parents of COPY, MSELECT, MSTACK
(UPat((Ops.COPY, Ops.MSELECT, Ops.MSTACK), name="rb"), realize_parents),
])
def recursive_group(tr:UOp, st:ShapeTracker, r:UOp, children:dict[UOp, dict[UOp, None]], realizes:dict[UOp, None],
reduce_for_op:dict[UOp, UOp], group:dict[UOp, None], cache:dict[tuple[UOp, ShapeTracker], None]) -> None:
if (tr, st) in cache: return
cache.setdefault((tr, st))
rsize = unwrap(r.st).size
if tr in realizes and tr is not r:
# can only fuse contiguous
# max one reduceop per kernel
if not st.contiguous or st.size != rsize or tr in reduce_for_op: group.setdefault(r)
return group.setdefault(tr)
for tr_next in children.get(tr, {}):
# max one reduceop per kernel
if tr_next.op is Ops.REDUCE_AXIS: return group.setdefault(r)
# can only fuse contiguous
if len(st_childs:=dedup(unwrap(x.st) for x in tr_next.src if x.base == tr)) > 1: return group.setdefault(r)
recursive_group(tr_next, st+st_childs[0], r, children, realizes, reduce_for_op, group, cache)
def group_realizes(sink:UOp) -> dict[UOp, None]:
# start by adding uops that always realize
realizes: dict[UOp, None] = {}
sink = graph_rewrite(sink, do_realize, ctx=realizes, name="do_realize")
if DONT_GROUP_REDUCES: return realizes
# construct children graph (only for bases)
children: dict[UOp, dict[UOp, None]] = {}
assigns: dict[UOp, None] = {}
for u in (toposort:=sink.toposort()):
if u.op in {Ops.VIEW, Ops.SINK}: continue
if u.op is Ops.ASSIGN: assigns[u.buf_uop] = None
for s in u.src: children.setdefault(s.base, {})[u] = None
# find all reduces, and pair them to a elementwise op. if they can't be cleanly paired, force realize the reduce (or a contig child)
reduce_for_op: dict[UOp, UOp] = {}
double_reduces: list[UOp] = []
for r in toposort:
if r.op is not Ops.REDUCE_AXIS: continue
if len(r.arg) == 3 and r.arg[2] is True: continue
if FUSE_CONV_BW and r.src[0].base.op is Ops.REDUCE_AXIS and r.src[0] is not r.src[0].base: double_reduces.append(r)
if r in realizes: continue
group: dict[UOp, None] = {}
recursive_group(r, unwrap(r.st), r, children, realizes, reduce_for_op, group, cache={})
# max one reduceop per kernel
can_chase = all(tr not in reduce_for_op for tr in group)
for u in r.toposort(gate=lambda u: u not in realizes):
if u.op is Ops.REDUCE_AXIS and u.src[0].base.op is Ops.CONST:
can_chase = False
break
# TODO: forced_realize exists because the scheduler is incapable of checking for self-contained DAGs
forced_realize = r in group
# can only have one output
if not forced_realize and len(group) > 1: forced_realize = True
# can only fuse assign if no other assign_target is used in the kernel
if not forced_realize and (assign_targets:={x.buf_uop for x in group if x.op is Ops.ASSIGN}):
parents = [r, *group]
while parents and not forced_realize:
p = parents.pop().base
if p.op is Ops.BUFFER and p in assigns and p not in assign_targets: forced_realize, can_chase = True, False
if p in realizes: continue
parents.extend(p.src)
if forced_realize or not group:
tr = r
if can_chase:
# can chase this down to contiguous children
st = unwrap(tr.st)
while len(lst:=children.get(tr, {})) == 1:
tr_next = next(iter(lst))
st_childs = dedup(unwrap(s.st) for s in tr_next.src if s.base is tr)
if len(st_childs) > 1: break
if st.size != st_childs[0].size: break
st = st + st_childs[0]
if not st.contiguous or tr_next.op is Ops.REDUCE_AXIS: break
tr = tr_next
# don't cast to higher size before store (tr cannot be realized if forced_realize)
if tr.op is Ops.CAST and tr.dtype.itemsize > tr.src[0].dtype.itemsize:
tr = tr.src[0].base
group = {tr: None}
realizes[tr] = None
reduce_for_op.update((tr, r) for tr in group)
# fuse double reduces with no other child
for reduceop in double_reduces:
top_reduce = reduceop.src[0].base
if len(children.get(top_reduce, {})) == 1: del realizes[top_reduce]
return realizes
# **** create kernels
@dataclass(frozen=True)
class Kernel:
ast: UOp
metadata: tuple[Metadata, ...] = ()
def __repr__(self):
ast_rep = f"SINK{tuple(s.op for s in self.ast.src)}" if self.ast.op is Ops.SINK else repr(self.ast.op)
return f"<Kernel {len(list(self.ast.toposort()))} {ast_rep} {self.metadata}>"
def create_kernel(x:UOp, b:UOp|None=None):
if b is None: b = UOp.new_buffer(x.device, x.size, x.dtype)
kernel = UOp(Ops.KERNEL, src=(b,)+x.src, arg=Kernel(x.sink(), m if (m:=x.metadata) else ()))
buffer = b.base if b.size == b.base.size else UOp(Ops.BUFFER_VIEW, b.dtype, (b.base,), (b.size, b.arg.views[0].offset))
return buffer.assign(kernel).reshape(x.shape)
DONT_PLACE_IN_KERNEL = {Ops.KERNEL, Ops.ASSIGN, Ops.BUFFER, Ops.MSELECT, Ops.MSTACK, Ops.MULTI}
def append_to_kernel(x:UOp):
new_srcs: list[UOp] = []
metadata = x.arg.metadata
for s in x.src:
if s.op in DONT_PLACE_IN_KERNEL: new_srcs.append(s)
else:
new_srcs.extend(s.src)
# NOTE: because const and device are shared UOps they don't change metadata
# NOTE: if it's a reshape after ASSIGN we're not fusing that parent kernel
if s.base.op not in {Ops.CONST, Ops.DEVICE} and (not (s.op is Ops.RESHAPE and s.base.op is Ops.ASSIGN)) and (m:=s.metadata): metadata += m
if (new_src:=tuple(dedup(new_srcs))) != x.src: return x.replace(src=new_src, arg=Kernel(x.arg.ast, tuple(dedup(metadata))))
create_kernels = PatternMatcher([
# always give assign/gbarrier a kernel
(UPat.assign(UPat.var("b"), UPat(GroupOp.All-{Ops.KERNEL}), name="x"), create_kernel),
(UPat(Ops.GBARRIER, src=(UPat.var("x"),)), create_kernel),
# walk back the local graph until we reach a realized source
(UPat(Ops.KERNEL, name="x"), append_to_kernel),
# push RESHAPE through MSELECT
(UPat(Ops.MSELECT, src=(UPat(Ops.RESHAPE, name="r"),), name="ms"), lambda ms,r: r.src[0].mselect(ms.arg).reshape(r.arg)),
# push RESHAPE through MSTACK
(UPat(Ops.MSTACK, src=UPat(Ops.RESHAPE), name="ms"),
lambda ms: UOp(Ops.MSTACK, ms.dtype, tuple(x.src[0] for x in ms.src)).reshape(ms.src[0].arg)),
])
# **** swizzler
merge_views = PatternMatcher([
# merge adjacent views
(UPat(Ops.VIEW, src=(UPat(Ops.VIEW, name="v1"),), name="v2"), lambda v1,v2: v1.replace(arg=v1.arg+v2.arg)),
# replace MovementOps with VIEW
(UPat(GroupOp.Movement, src=(UPat.var("x"),), name="mop"), lambda mop,x: x.base.view(mop.st)),
# remove NOOP views
(UPat.var("x").view(name="view"), lambda x,view: x if x.st is not None and view.st.contiguous and view.shape == x.shape else None),
(UPat(GroupOp.All-{Ops.DEFINE_GLOBAL}).view(name="view"),
lambda view: view.const_like(0) if (mask:=view.st.views[-1].mask) is not None and any((x[1]-x[0]) == 0 for x in mask) else None),
# only unmaksed VIEW on CONST replaces the ShapeTracker
(UPat(Ops.VIEW, src=(UPat((Ops.CONST, Ops.DEFINE_VAR), name="x"),), name="view"),
lambda x,view: x.replace(src=(x.src[0].replace(arg=x.st+view.st),)) if all(v.mask is None for v in (x.st+view.st).views) else None),
])
def reduce_push_add_ones(src:UOp, r:UOp, view:UOp):
# contiguous, expand, and the same with ones removed
if unwrap(view.st).contiguous and len(r.shape) < len(view.shape) and \
tuple(x for x in r.shape if resolve(x != 1)) == tuple(x for x in view.shape if resolve(x != 1)):
new_shape: list[sint] = []
new_reduce_axis = []
if (contraction:=get_contraction_with_reduce(view.shape, r.shape, r.arg[1])) is None: return None
for i,pairs in enumerate(contraction):
new_shape_chunk = [view.shape[p] for p in pairs]
if i in r.arg[1]:
# if this is a reduce axis, we need a 1 in the view here to put it
assert len(new_shape_chunk) > 0
new_shape += [1]*(len(pairs)-1) + [src.shape[i]]
new_reduce_axis.append(len(new_shape)-1)
else:
# otherwise, pass through the new_shape_chunk
new_shape += new_shape_chunk
ret = r.replace(src=(src.reshape(tuple(new_shape)),), arg=(r.arg[0], tuple(new_reduce_axis))+r.arg[2:])
assert ret.shape == view.shape, f"shape mismatch on reduce_push_add_ones, {ret.shape} != {view.shape}"
return ret
return None
view_left = merge_views+PatternMatcher([
# view before elementwise and buffer ops
(UPat(Ops.VIEW, src=(UPat({*GroupOp.ALU, Ops.CAST, Ops.BITCAST, Ops.BIND, Ops.LOAD, Ops.STORE, Ops.VALID}, name="e"),), name="view"),
lambda e,view: e.replace(src=tuple(s.view(view.st) for s in e.src))),
# if there's ones added after reduce, put this before the reduce
(UPat(Ops.VIEW, src=(UPat(Ops.REDUCE_AXIS, src=(UPat.var("src"),), name="r"),), name="view"), reduce_push_add_ones),
])
def apply_swizzle(u:UOp) -> UOp: return graph_rewrite(u, view_left, name="Sub View Left")
# change reduceop axes and input ShapeTrackers, view gets replaced with a reshape.
def swizzle_reduceop(r:UOp, src:UOp, view:UOp, fuse=False):
# contiguous and same size can push to children
# if there's a reduce child, shapes match with ones removed
if unwrap(view.st).contiguous and view.size == r.size and \
(not (len(r.arg) == 3 and r.arg[2]) or # arg[2] = True is fuse marker
tuple((i,x) for i,x in enumerate(r.shape) if resolve(x != 1)) == tuple((i,x) for i,x in enumerate(view.shape) if resolve(x != 1))):
return None
# swizzle the input
input_st = ShapeTracker.from_shape(src.shape)
tmp = input_st.permute(tuple(i for i in range(len(input_st.shape)) if i not in r.axis_arg)+r.axis_arg)
prshape = prod(rshape:=tmp.shape[-len(r.axis_arg):])
strides = strides_for_shape(rshape)
nv = [View.create(v.shape+rshape, tuple(x*prshape for x in v.strides)+strides,
v.offset*prshape, v.mask+tuple((0,s) for s in rshape) if v.mask is not None else None) for v in unwrap(view.st).views]
new_view = tmp + ShapeTracker(tuple(nv))
swizzled_input = apply_swizzle(src.view(new_view))
# create a new reduceop
new_axis = tuple(range(len(view.shape), len(view.shape) + len(r.axis_arg)))
if fuse: red = UOp(Ops.REDUCE_AXIS, r.dtype, (swizzled_input.fuse(),), (r.arg[0], new_axis, True))
else: red = UOp(Ops.REDUCE_AXIS, r.dtype, (swizzled_input,), (r.arg[0], new_axis))
return red.reshape(view.shape)
def reduceop_view_right(src:UOp, v:UOp, r:UOp):
assert unwrap(v.st).contiguous and v.size == src.size, f"can't compute new axis for {src.shape} -> {r.shape}"
new_axis = [i for i,(s,u) in enumerate(zip(src.shape, r.shape)) if s != u]
return src.r(r.arg[0], tuple(new_axis)).reshape(r.shape)
def elementwise_view_right(root:UOp):
if not (swizzles:=[x for x in root.src if x.op is Ops.VIEW and x.base.op not in ALWAYS_CONTIGUOUS]): return None
assert all_same([x.base.size for x in swizzles]), f"swizzle inputs must have the same size {swizzles}"
# place view after applying the elementwise op
new_st = ShapeTracker.from_shape(swizzles[0].base.shape)
new_src = [x.base if x.base.shape==new_st.shape else apply_swizzle(x.view(new_st)) for x in root.src]
# reshape to match downstream shapes
return root.replace(src=tuple(new_src)).reshape(root.shape)
# push VIEW to children
view_right = merge_views+PatternMatcher([
# push a non contiguous ShapeTracker through reduceop
(UPat(Ops.VIEW, src=(UPat(Ops.REDUCE_AXIS, src=(UPat.var("src"),), name="r"),), name="view"), swizzle_reduceop),
# apply view after reduceops
(UPat(Ops.REDUCE_AXIS, src=(UPat(Ops.VIEW, src=(UPat(GroupOp.All-ALWAYS_CONTIGUOUS, name="src"),), name="v"),), name="r"), reduceop_view_right),
# apply view after elementwise ops
(UPat(GroupOp.All-{Ops.SINK, Ops.GBARRIER}, name="root"), elementwise_view_right),
# merge axes for double reduce (invert of SPLIT_REDUCEOP=1)
(UPat(Ops.REDUCE_AXIS, src=(UPat(Ops.REDUCE_AXIS, name="r1"),), name="r2"),
lambda r1,r2: r1.replace(arg=(r1.arg[0], r2.arg[1]+r1.arg[1])) if r1.arg[0] is r2.arg[0] else None),
])
# **** fix kernel AST
add_buffer_ops = PatternMatcher([
# LOAD
(UPat(Ops.BUFFER, name="x"), lambda ctx,x: UOp.load(UOp(Ops.DEFINE_GLOBAL, x.dtype.ptr(x.size), (), ctx.index(x)).view(x.st),)),
# STORE (except for meta ops)
(UPat(Ops.SINK, src=(UPat(GroupOp.Meta, name="x"),)), lambda x:x),
(UPat(Ops.SINK, src=UPat(GroupOp.All-{Ops.STORE}), name="sink"), lambda ctx,sink:
UOp.sink(*[UOp.store(UOp(Ops.DEFINE_GLOBAL, (s:=x.base).dtype.ptr(ctx[i].size), (), i).view(s.st), s) for i,x in enumerate(sink.src)])),
# passthrough ASSIGN
(UPat(Ops.ASSIGN, name="x"), lambda x: x.src[1]),
# VALID
(UPat(Ops.VIEW, src=(UPat.cvar(),), name="self"), UOp.valid),
])
def check_load_st(glbl:UOp, view:UOp):
if glbl.arg != 0 or (st:=unwrap(view.st)).contiguous: return
# if it has a single view and it becomes contiguous when you shrink expanded axes, it's fine
if len(st.views) == 1 and st.shrink(tuple((0,1) if st == 0 else (0,s) for s,st in zip(st.shape, st.views[0].strides))).contiguous: return
# if it has a single view and it's equal when you shrink a contig, it's fine
if len(st.views) == 1 and (mask:=st.views[0].mask) is not None and ShapeTracker.from_shape(st.shape).shrink(mask) == st.shrink(mask): return
# otherwise, it's not fine
raise RuntimeError("self operand of augmented assign must be contiguous.\nhelp: consider using .contiguous():\n"
+colored(" - a += a.T\n", "red")+colored(" + a += a.T.contiguous()", "green"))
fix_kernel_ops = PatternMatcher([
# remove CONTIGUOUS/DEVICE from kernel AST
(UPat((Ops.CONTIGUOUS, Ops.MSELECT), src=(UPat.var("x"),)), lambda x: x),
(UPat(Ops.VIEW, src=(UPat(Ops.DEVICE),), name="view"), lambda view: view.replace(src=())),
# no ImageDType after index
(UPat(GroupOp.All-{Ops.DEFINE_GLOBAL, Ops.VIEW}, name="x"), lambda x: x.replace(dtype=x.dtype.base) if isinstance(x.dtype, ImageDType) else None),
# if this kernel also assigns to the loaded buffer, ensure we can index it correctly
(UPat(Ops.LOAD, src=(UPat.var("glbl").view(name="view"),)), check_load_st),
])
replace_globals = PatternMatcher([
# replace ASSIGN with the target BUFFER
(UPat(Ops.ASSIGN, src=(UPat(Ops.BUFFER), UPat(Ops.KERNEL)), name="assign", allow_any_len=True), lambda assign: assign.src[0]),
# HACK: select the 0 branch of MSTACK (the device is wrong after this, is that okay?)
(UPat(Ops.MSTACK, name="x"), lambda x: x.src[0]),
])
def fix_kernel_ast(k:UOp) -> UOp|None:
if k.arg.ast.op in GroupOp.Meta or all(s.op is Ops.STORE for s in k.arg.ast.src): return None
# replace global memory ops with the BUFFER they write to
ast = graph_rewrite(k.arg.ast, replace_globals, bottom_up=True, name="replace globals")
# push views to edges
ast = graph_rewrite(graph_rewrite(ast, view_left, name="Main View Left"), view_right, name="Main View Right")
# replace buffer with define_global + add load/store last
bufs = []
for s in k.src:
s = s.buf_uop
# traverse back through MSELECT and MSTACK. HACK: 0 branch of MSTACK only
while s.op in {Ops.MSELECT, Ops.MSTACK}: s = s.src[0]
bufs.append(s)
ast = graph_rewrite(ast, view_left+add_buffer_ops+fix_kernel_ops, bufs, bottom_up=True, name="replace buffer")
if ast.op is Ops.SINK and not all_same([x.device for x in k.src]):
raise RuntimeError(f"all buffers must be on the same device: {tuple(b.buf_uop.buffer for b in k.src)}")
return k.replace(arg=Kernel(ast, k.arg.metadata))
create_ast = PatternMatcher([(UPat(Ops.KERNEL, name="k"), fix_kernel_ast),])
# ** add metadata of KERNEL outputs
def append_metadata(root:UOp, k:UOp):
if not root.metadata or (new_metadata:=tuple(dedup(k.arg.metadata+root.metadata))) == k.arg.metadata: return None
return root.replace(src=(root.src[0], k.replace(arg=Kernel(k.arg.ast, new_metadata)))+root.src[2:])
replace_metadata = PatternMatcher([(UPat(Ops.ASSIGN, src=(UPat(), UPat(Ops.KERNEL, name="k")), name="root", allow_any_len=True), append_metadata),])
pm_fuse = PatternMatcher([
# FUSE on CONTIGUOUS removes FUSE
(UPat(Ops.CONTIGUOUS, name="c").fuse(), lambda c: c),
# FUSE triggers swizzle on reduceop
(UPat(Ops.VIEW, src=(UPat(Ops.REDUCE_AXIS, src=(UPat.var("src"),), name="r").or_casted(),), name="view").fuse(),
lambda r,src,view: ret.cast(view.dtype) if (ret:=swizzle_reduceop(r, src, view, fuse=True)) is not None else None),
# FUSE on reduce (without view) adds fuse marker to grouper
(UPat(Ops.REDUCE_AXIS, name="r").fuse(),
lambda r: r.replace(src=(r.src[0].fuse(),), arg=r.arg+(True,)) if len(r.arg) == 2 else None),
# remove FUSE and insert CONTIGUOUS if it's an unsafe pad
(UPat(Ops.VIEW, src=(UPat(GroupOp.UnsafePad, name="alu"),), name="view").fuse(),
lambda alu, view: alu.contiguous().view(view.st) if any(v.mask is not None for v in view.st.views) else None),
# FUSE elementwise.
(UPat(Ops.VIEW, src=(UPat({*GroupOp.ALU, Ops.CAST}, name="alu"),), name="view").fuse(),
lambda alu, view: alu.replace(src=tuple(apply_swizzle(x.view(view.arg)).fuse() for x in alu.src))),
# push FUSE through to srcs
(UPat(Ops.FUSE, name="x"), lambda x: x.src[0].replace(src=tuple(y.fuse() for y in x.src[0].src))),
])
def do_fusion(x:UOp):
found_contiguous = {}
def gate_contiguous(x):
if is_contiguous:=(x.op is Ops.CONTIGUOUS): found_contiguous[x] = x.replace(src=(UOp(Ops.VIEW, arg=x.st),))
return not is_contiguous
x.toposort(gate=gate_contiguous)
del gate_contiguous
return graph_rewrite(x.substitute(found_contiguous), pm_fuse, name="local fusion").substitute({v:k for k,v in found_contiguous.items()})
def fuse_arange(root:UOp):
# skip if root is arange
if not FUSE_ARANGE or root.src[0].base.op is Ops.CONST: return None
# gather all local aranges (including any fused ones)
local_arange: list[UOp] = []
def gate_reduce(u):
if u.op is Ops.REDUCE_AXIS and u.src[0].base.op is Ops.CONST: local_arange.append(u)
return u.op not in {*ALWAYS_CONTIGUOUS, Ops.REDUCE_AXIS} or u is root
toposort = root.toposort(gate=gate_reduce)
if not local_arange: return None
# fuse the nearest expand child of arange
local_children: dict[UOp, list[UOp]] = {}
for u in toposort:
for s in u.src: local_children.setdefault(s, []).append(u)
fuse_rep: dict[UOp, UOp] = {}
# skip if root depends on aranges with different ndims. This can be improved
if any(len(set(dims)) > 1 for dims in zip(*[r.src[0].shape for r in local_arange])): return
for r in local_arange:
# skip if already fused
if len(r.arg) > 2: continue
q = list(local_children[r])
while q:
u = q.pop()
if not (curr_children:=local_children.get(u, [])): continue
for child in curr_children:
other_paths = {s for s in child.toposort() if s.op in {Ops.REDUCE_AXIS, Ops.BUFFER} and s not in {root, r}}
fuse_rep[child] = child.replace(src=tuple(s.fuse() if s is u else s for s in child.src))
if other_paths: break
else: q.extend(curr_children)
return root.substitute(fuse_rep, name="fuse_arange") if fuse_rep else None
do_fuse = PatternMatcher([
(UPat(Ops.FUSE, name="x"), do_fusion),
(UPat(Ops.REDUCE_AXIS, name="root"), fuse_arange),
])
add_gbarrier = PatternMatcher([(UPat(GroupOp.All-{Ops.GBARRIER, Ops.ASSIGN}, name="x"),
lambda ctx,x: x.replace(tag=1).gbarrier() if x in ctx and x.tag is None else None)])
# TODO: get this from the device through GrouperOpts
DEVICE_MAX_BUFS = {"METAL":32, "WEBGPU":8}
def limit_bufs(root:UOp):
# check if backend has a buffer limit
device = root.device if isinstance(root.device, str) else root.device[0].split(":")[0]
if not (MAX_BUFS:=getenv("MAX_KERNEL_BUFFERS", DEVICE_MAX_BUFS.get(device, 0))): return None
# count number of unique buffers flowing into this op
bufs: set[UOp] = set()
def gate_input(u:UOp):
if (is_load:=(u.op in {Ops.BUFFER, Ops.GBARRIER, Ops.ASSIGN, Ops.MSTACK})): bufs.add(u)
return not is_load
root.toposort(gate=gate_input)
# NOTE: this -1 is for the output buffer
if len(bufs)>=MAX_BUFS-1:
return root.replace(src=tuple(s if s.base in bufs else s.replace(tag=1).gbarrier() for s in root.src))
finalize_gbarrier = PatternMatcher([
# if an op takes more than one input, check combined LOADs don't exceed device limits
(UPat(set.union(GroupOp.Binary, GroupOp.Ternary), name="root"), limit_bufs),
# merge gbarrier
(UPat((Ops.GBARRIER, Ops.CONTIGUOUS), src=(UPat(Ops.GBARRIER),), name="x"), lambda x: x.src[0]),
# add contiguous to VIEW before GBARRIER
(UPat(Ops.GBARRIER, src=(UPat(Ops.VIEW,),), name="x"), lambda x: x.src[0].contiguous().gbarrier()),
# remove gbarrier on constants without a contiguous
(UPat(Ops.GBARRIER, src=(UPat(Ops.CONST),), name="x"), lambda x: x.src[0]),
])
remove_tags = PatternMatcher([(UPat(GroupOp.All, name="x"), lambda x: x.replace(tag=None) if x.tag is not None else None)])
@track_rewrites(name_fxn=lambda big_sink,ret: f"Schedule {pluralize('Kernel',len([u for u in ret[big_sink].toposort() if u.op is Ops.KERNEL]))}")
def get_kernelize_map(big_sink:UOp) -> dict[UOp, UOp]:
# multi + merge_views + simplify
tensor_map = graph_rewrite_map(big_sink, multi_pm+replace_allreduce+do_fuse+merge_views+sym+replace_contiguous, ctx={}, name="merge_views")
# display the cleaned up tensor graph
if getenv("VIZ"): graph_rewrite(tensor_map[big_sink], PatternMatcher([]), name="View Tensor Graph")
# insert gbarriers in places determined by the realize map
realize_map = group_realizes(tensor_map[big_sink])
tensor_map = graph_rewrite_map(tensor_map[big_sink], add_gbarrier, realize_map, bottom_up=True, input_map=tensor_map, name="insert_gbarrier")
# optionally reorder gbarriers or insert more (top down)
tensor_map = graph_rewrite_map(tensor_map[big_sink], finalize_gbarrier, input_map=tensor_map, name="finalize_gbarrier")
tensor_map = graph_rewrite_map(tensor_map[big_sink], remove_tags, input_map=tensor_map, name="remove_tags")
# TODO: move view_left/view_right here
# group into kernels (this is context-free)
tensor_map = graph_rewrite_map(tensor_map[big_sink], create_kernels, input_map=tensor_map, name="create_kernels")
# if a kernel depends on a buffer, and that buffer is later assigned to, make the assign depend on the kernel's assign
kernel_assign: dict[UOp, UOp] = {}
assign_rep: dict[UOp, UOp] = {}
for u in tensor_map[big_sink].toposort():
if u.op is not Ops.ASSIGN: continue
kernel_assign[u.buf_uop] = u
for s in u.src[1].src:
# TODO: this is probably broken for MSELECT/MSTACK
if s.op is not Ops.BUFFER or s is u.buf_uop or (a:=kernel_assign.get(s)) is None: continue
if any(x.op is Ops.ASSIGN and x.buf_uop is s for x in u.toposort()):
raise RuntimeError(f"cycle detected in graph, kernel for {u.buf_uop} must either depend on ASSIGN or BUFFER")
assign_rep[a] = kernel_assign[s] = a.replace(src=a.src+(u,))
if assign_rep:
tensor_map = graph_rewrite_map(tensor_map[big_sink], _substitute, ctx=assign_rep, bottom_up=True, input_map=tensor_map, name="fix_assign")
# finally, create the AST for kernels
tensor_map = graph_rewrite_map(tensor_map[big_sink], create_ast+replace_metadata, bottom_up=True, input_map=tensor_map, name="create_ast")
# display the final graph
sched_sink = tensor_map[big_sink]
if getenv("VIZ"): graph_rewrite(sched_sink, PatternMatcher([]), name="View Kernel Graph")
if getenv("VIZ"): graph_rewrite(sched_sink, PatternMatcher([]), name="View Memory Graph")
# verify Kernels match the spec
if __debug__: type_verify(list(sched_sink.toposort()), tensor_uop_spec)
return tensor_map