openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

276 lines
16 KiB

1 month ago
from __future__ import annotations
import ctypes, functools, subprocess, io, atexit, collections, json
from typing import Tuple, TypeVar, List, Dict, Any
import tinygrad.runtime.autogen.hsa as hsa
from tinygrad.helpers import DEBUG, init_c_var, from_mv, round_up, to_mv, init_c_struct_t, getenv, PROFILE
from tinygrad.device import Compiled, Compiler, CompileError, BufferSpec, LRUAllocator
from tinygrad.renderer.cstyle import HIPRenderer
from tinygrad.runtime.support.hsa import check, scan_agents, find_memory_pool, AQLQueue
from tinygrad.runtime.support.hip_comgr import compile_hip
if getenv("IOCTL"): import extra.hip_gpu_driver.hip_ioctl # noqa: F401
class HSAProfiler:
def __init__(self):
self.tracked_signals = collections.defaultdict(list)
self.collected_events: List[Tuple[Any, ...]] = []
self.copy_timings = hsa.hsa_amd_profiling_async_copy_time_t()
self.disp_timings = hsa.hsa_amd_profiling_dispatch_time_t()
def track(self, signal, device, name, is_copy=False): self.tracked_signals[device].append((signal, name, is_copy))
def process(self, device):
# Process all tracked signals, should be called before any of tracked signals are reused.
for sig,name,is_copy in self.tracked_signals[device]:
if is_copy: check(hsa.hsa_amd_profiling_get_async_copy_time(sig, ctypes.byref(timings := self.copy_timings)))
else: check(hsa.hsa_amd_profiling_get_dispatch_time(device.agent, sig, ctypes.byref(timings := self.disp_timings))) #type:ignore
self.collected_events.append((device.device_id, 1 if is_copy else 0, name, timings.start, timings.end))
self.tracked_signals.pop(device)
def save(self, path):
mjson = []
for i in range(len(HSADevice.devices)):
mjson.append({"name": "process_name", "ph": "M", "pid": i, "args": {"name": "HSA"}})
mjson.append({"name": "thread_name", "ph": "M", "pid": i, "tid": 0, "args": {"name": "AQL"}})
mjson.append({"name": "thread_name", "ph": "M", "pid": i, "tid": 1, "args": {"name": "SDMA"}})
for dev_id,queue_id,name,st,et in self.collected_events:
mjson.append({"name": name, "ph": "B", "pid": dev_id, "tid": queue_id, "ts": st*1e-3})
mjson.append({"name": name, "ph": "E", "pid": dev_id, "tid": queue_id, "ts": et*1e-3})
with open(path, "w") as f: f.write(json.dumps({"traceEvents": mjson}))
print(f"Saved HSA profile to {path}")
Profiler = HSAProfiler()
class HSACompiler(Compiler):
def __init__(self, arch:str):
self.arch = arch
super().__init__(f"compile_hip_{self.arch}")
def compile(self, src:str) -> bytes:
try: return compile_hip(src, self.arch)
except RuntimeError as e: raise CompileError(e)
class HSAProgram:
def __init__(self, device:HSADevice, name:str, lib:bytes):
self.device, self.name, self.lib = device, name, lib
if DEBUG >= 6:
asm = subprocess.check_output(["/opt/rocm/llvm/bin/llvm-objdump", '-d', '-'], input=lib)
print('\n'.join([x for x in asm.decode('utf-8').split("\n") if 's_code_end' not in x]))
self.exec = init_c_var(hsa.hsa_executable_t(), lambda x: check(hsa.hsa_executable_create_alt(hsa.HSA_PROFILE_FULL, hsa.HSA_DEFAULT_FLOAT_ROUNDING_MODE_DEFAULT, None, ctypes.byref(x)))) # noqa: E501
self.code_reader = init_c_var(hsa.hsa_code_object_reader_t(),
lambda x: check(hsa.hsa_code_object_reader_create_from_memory(lib, len(lib), ctypes.byref(x))))
check(hsa.hsa_executable_load_agent_code_object(self.exec, self.device.agent, self.code_reader, None, None))
check(hsa.hsa_executable_freeze(self.exec, None))
self.kernel = init_c_var(hsa.hsa_executable_symbol_t(), lambda x: check(hsa.hsa_executable_get_symbol_by_name(self.exec, (name+".kd").encode("utf-8"), ctypes.byref(self.device.agent), ctypes.byref(x)))) # noqa: E501
self.handle = init_c_var(ctypes.c_uint64(), lambda x: check(hsa.hsa_executable_symbol_get_info(self.kernel, hsa.HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, ctypes.byref(x)))) # noqa: E501
self.kernargs_segment_size = init_c_var(ctypes.c_uint32(), lambda x: check(hsa.hsa_executable_symbol_get_info(self.kernel, hsa.HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, ctypes.byref(x)))).value # noqa: E501
self.group_segment_size = init_c_var(ctypes.c_uint32(), lambda x: check(hsa.hsa_executable_symbol_get_info(self.kernel, hsa.HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, ctypes.byref(x)))).value # noqa: E501
self.private_segment_size = init_c_var(ctypes.c_uint32(), lambda x: check(hsa.hsa_executable_symbol_get_info(self.kernel, hsa.HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, ctypes.byref(x)))).value # noqa: E501
def __del__(self):
self.device.synchronize()
if hasattr(self, 'code_reader'): check(hsa.hsa_code_object_reader_destroy(self.code_reader))
if hasattr(self, 'exec'): check(hsa.hsa_executable_destroy(self.exec))
def __call__(self, *args, global_size:Tuple[int,int,int]=(1,1,1), local_size:Tuple[int,int,int]=(1,1,1), vals:Tuple[int, ...]=(), wait=False):
if not hasattr(self, "args_struct_t"):
self.args_struct_t = init_c_struct_t(tuple([(f'f{i}', ctypes.c_void_p) for i in range(len(args))] +
[(f'v{i}', ctypes.c_int) for i in range(len(vals))]))
if ctypes.sizeof(self.args_struct_t) != self.kernargs_segment_size:
raise RuntimeError(f"HSAProgram.__call__: incorrect args struct size {ctypes.sizeof(self.args_struct_t)} != {self.kernargs_segment_size}")
kernargs = None
if self.kernargs_segment_size > 0:
kernargs = self.device.alloc_kernargs(self.kernargs_segment_size)
args_st = self.args_struct_t.from_address(kernargs)
for i in range(len(args)): args_st.__setattr__(f'f{i}', args[i])
for i in range(len(vals)): args_st.__setattr__(f'v{i}', vals[i])
self.device.flush_hdp()
signal = self.device.alloc_signal(reusable=True) if wait or PROFILE else None
self.device.hw_queue.submit_kernel(self, global_size, local_size, kernargs, completion_signal=signal)
if PROFILE: Profiler.track(signal, self.device, self.name)
if wait:
hsa.hsa_signal_wait_scacquire(signal, hsa.HSA_SIGNAL_CONDITION_LT, 1, (1 << 64) - 1, hsa.HSA_WAIT_STATE_ACTIVE)
check(hsa.hsa_amd_profiling_get_dispatch_time(self.device.agent, signal, ctypes.byref(timings := hsa.hsa_amd_profiling_dispatch_time_t())))
return (timings.end - timings.start) * self.device.clocks_to_time
T = TypeVar("T")
CHUNK_SIZE, PAGE_SIZE = 256*1024*1024, 0x1000
class HSAAllocator(LRUAllocator):
def __init__(self, device:HSADevice):
self.device = device
super().__init__()
def _alloc(self, size:int, options:BufferSpec):
if options.host:
check(hsa.hsa_amd_memory_pool_allocate(HSADevice.cpu_mempool, size, 0, ctypes.byref(mem := ctypes.c_void_p())))
check(hsa.hsa_amd_agents_allow_access(2, (hsa.hsa_agent_t*2)(HSADevice.cpu_agent, self.device.agent), None, mem))
return mem.value
c_agents = (hsa.hsa_agent_t * len(HSADevice.agents[hsa.HSA_DEVICE_TYPE_GPU]))(*HSADevice.agents[hsa.HSA_DEVICE_TYPE_GPU])
check(hsa.hsa_amd_memory_pool_allocate(self.device.gpu_mempool, size, 0, ctypes.byref(buf := ctypes.c_void_p())))
check(hsa.hsa_amd_agents_allow_access(len(HSADevice.agents[hsa.HSA_DEVICE_TYPE_GPU]), c_agents, None, buf))
return buf.value
def _free(self, opaque:T, options:BufferSpec):
HSADevice.synchronize_system()
check(hsa.hsa_amd_memory_pool_free(opaque))
def _copyin(self, dest:T, src: memoryview):
# Async copyin sync model uses barriers on the main hw queue, since barriers are guaranteed to execute in order with all other packets.
self.device.hw_queue.submit_barrier([], sync_signal := self.device.alloc_signal(reusable=True))
mem = self._alloc(src.nbytes, BufferSpec(host=True))
ctypes.memmove(mem, from_mv(src), src.nbytes)
check(hsa.hsa_amd_memory_async_copy_on_engine(dest, self.device.agent, mem, HSADevice.cpu_agent, src.nbytes, 1, ctypes.byref(sync_signal),
copy_signal := self.device.alloc_signal(reusable=True), hsa.HSA_AMD_SDMA_ENGINE_0, True))
self.device.hw_queue.submit_barrier([copy_signal])
self.device.delayed_free.append(mem)
if PROFILE: Profiler.track(copy_signal, self.device, f"copyin: CPU -> HSA:{self.device.device_id}", is_copy=True)
def copy_from_fd(self, dest, fd, offset, size):
self.device.hw_queue.submit_barrier([], sync_signal := self.device.alloc_signal(reusable=True))
if not hasattr(self, 'hb'):
self.hb = [self._alloc(CHUNK_SIZE, BufferSpec(host=True)) for _ in range(2)]
self.hb_signals = [self.device.alloc_signal(reusable=False) for _ in range(2)]
self.hb_polarity = 0
self.sdma = [hsa.HSA_AMD_SDMA_ENGINE_0, hsa.HSA_AMD_SDMA_ENGINE_1]
for sig in self.hb_signals: hsa.hsa_signal_store_relaxed(sig, 0)
fo = io.FileIO(fd, "a+b", closefd=False)
fo.seek(offset - (minor_offset:=offset % PAGE_SIZE))
copies_called = 0
copied_in = 0
for local_offset in range(0, size+minor_offset, CHUNK_SIZE):
local_size = min(round_up(size+minor_offset, PAGE_SIZE)-local_offset, CHUNK_SIZE)
copy_size = min(local_size-minor_offset, size-copied_in)
if copy_size == 0: break
hsa.hsa_signal_wait_scacquire(self.hb_signals[self.hb_polarity], hsa.HSA_SIGNAL_CONDITION_LT, 1, (1 << 64) - 1, hsa.HSA_WAIT_STATE_ACTIVE)
self.device.reusable_signals.append(self.hb_signals[self.hb_polarity]) # it's free now and can be reused
self.hb_signals[self.hb_polarity] = self.device.alloc_signal(reusable=False)
fo.readinto(to_mv(self.hb[self.hb_polarity], local_size))
check(hsa.hsa_amd_memory_async_copy_on_engine(dest+copied_in, self.device.agent, self.hb[self.hb_polarity]+minor_offset, HSADevice.cpu_agent,
copy_size, 1, ctypes.byref(sync_signal), self.hb_signals[self.hb_polarity],
self.sdma[self.hb_polarity], True))
copied_in += copy_size
self.hb_polarity = (self.hb_polarity + 1) % len(self.hb)
minor_offset = 0 # only on the first
copies_called += 1
wait_signals = [self.hb_signals[self.hb_polarity - 1]]
if copies_called > 1: wait_signals.append(self.hb_signals[self.hb_polarity])
self.device.hw_queue.submit_barrier(wait_signals)
def _copyout(self, dest:memoryview, src:T):
HSADevice.synchronize_system()
copy_signal = self.device.alloc_signal(reusable=True)
c_agents = (hsa.hsa_agent_t*2)(self.device.agent, HSADevice.cpu_agent)
check(hsa.hsa_amd_memory_lock_to_pool(from_mv(dest), dest.nbytes, c_agents, 2, HSADevice.cpu_mempool, 0, ctypes.byref(addr:=ctypes.c_void_p())))
check(hsa.hsa_amd_memory_async_copy(addr, HSADevice.cpu_agent, src, self.device.agent, dest.nbytes, 0, None, copy_signal))
hsa.hsa_signal_wait_scacquire(copy_signal, hsa.HSA_SIGNAL_CONDITION_LT, 1, (1 << 64) - 1, hsa.HSA_WAIT_STATE_ACTIVE)
check(hsa.hsa_amd_memory_unlock(from_mv(dest)))
if PROFILE: Profiler.track(copy_signal, self.device, f"copyout: HSA:{self.device.device_id} -> CPU", is_copy=True)
def transfer(self, dest:T, src:T, sz:int, src_dev=None, dest_dev=None):
src_dev.hw_queue.submit_barrier([], sync_signal_1 := src_dev.alloc_signal(reusable=True))
dest_dev.hw_queue.submit_barrier([], sync_signal_2 := dest_dev.alloc_signal(reusable=True))
c_wait_signal = (hsa.hsa_signal_t*2)(sync_signal_1, sync_signal_2)
check(hsa.hsa_amd_memory_async_copy_on_engine(dest, dest_dev.agent, src, src_dev.agent, sz, 2, c_wait_signal,
copy_signal := dest_dev.alloc_signal(reusable=False), hsa.HSA_AMD_SDMA_ENGINE_0, True))
src_dev.hw_queue.submit_barrier([copy_signal])
dest_dev.hw_queue.submit_barrier([copy_signal])
if PROFILE: Profiler.track(copy_signal, src_dev, f"transfer: HSA:{src_dev.device_id} -> HSA:{dest_dev.device_id}", is_copy=True)
class HSADevice(Compiled):
devices: List[HSADevice] = []
agents: Dict[int, List[hsa.hsa_agent_t]] = {}
cpu_agent: hsa.hsa_agent_t
cpu_mempool: hsa.hsa_amd_memory_pool_t
def __init__(self, device:str=""):
if not HSADevice.agents:
check(hsa.hsa_init())
atexit.register(hsa_terminate)
HSADevice.agents = scan_agents()
HSADevice.cpu_agent = HSADevice.agents[hsa.HSA_DEVICE_TYPE_CPU][0]
HSADevice.cpu_mempool = find_memory_pool(HSADevice.cpu_agent, segtyp=hsa.HSA_AMD_SEGMENT_GLOBAL, location=hsa.HSA_AMD_MEMORY_POOL_LOCATION_CPU)
if PROFILE: check(hsa.hsa_amd_profiling_async_copy_enable(1))
self.device_id = int(device.split(":")[1]) if ":" in device else 0
self.agent = HSADevice.agents[hsa.HSA_DEVICE_TYPE_GPU][self.device_id]
self.gpu_mempool = find_memory_pool(self.agent, segtyp=hsa.HSA_AMD_SEGMENT_GLOBAL, location=hsa.HSA_AMD_MEMORY_POOL_LOCATION_GPU)
self.hw_queue = AQLQueue(self)
HSADevice.devices.append(self)
check(hsa.hsa_agent_get_info(self.agent, hsa.HSA_AGENT_INFO_NAME, ctypes.byref(agent_name_buf := ctypes.create_string_buffer(256))))
self.arch = ctypes.string_at(agent_name_buf).decode()
check(hsa.hsa_system_get_info(hsa.HSA_SYSTEM_INFO_TIMESTAMP_FREQUENCY, ctypes.byref(gpu_freq := ctypes.c_uint64())))
self.clocks_to_time: float = 1 / gpu_freq.value
check(hsa.hsa_agent_get_info(self.agent, hsa.HSA_AMD_AGENT_INFO_HDP_FLUSH, ctypes.byref(hdp_flush := hsa.hsa_amd_hdp_flush_t())))
self.hdp_flush = hdp_flush
self.delayed_free: List[int] = []
self.reusable_signals: List[hsa.hsa_signal_t] = []
from tinygrad.runtime.graph.hsa import HSAGraph
super().__init__(device, HSAAllocator(self), HIPRenderer(), HSACompiler(self.arch), functools.partial(HSAProgram, self), HSAGraph)
# Finish init: preallocate some signals + space for kernargs
self.signal_pool = [init_c_var(hsa.hsa_signal_t(), lambda x: check(hsa.hsa_signal_create(1, 0, None, ctypes.byref(x)))) for _ in range(4096)]
self._new_kernargs_region(16 << 20) # initial region size is 16mb
def synchronize(self):
self.hw_queue.wait()
for sig in self.reusable_signals: hsa.hsa_signal_silent_store_relaxed(sig, 1)
self.signal_pool.extend(self.reusable_signals)
self.reusable_signals.clear()
for opaque_to_free in self.delayed_free: check(hsa.hsa_amd_memory_pool_free(opaque_to_free))
self.delayed_free.clear()
self.kernarg_next_addr = self.kernarg_start_addr
Profiler.process(self)
@staticmethod
def synchronize_system():
for d in HSADevice.devices: d.synchronize()
def alloc_signal(self, reusable=False):
if len(self.signal_pool): signal = self.signal_pool.pop()
else: check(hsa.hsa_amd_signal_create(1, 0, None, 0, ctypes.byref(signal := hsa.hsa_signal_t())))
# reusable means a signal could be reused after synchronize for the device it's allocated from is called.
if reusable: self.reusable_signals.append(signal)
return signal
def alloc_kernargs(self, sz):
if self.kernarg_next_addr + sz >= self.kernarg_start_addr + self.kernarg_pool_sz: self._new_kernargs_region(int(self.kernarg_pool_sz * 2))
result = self.kernarg_next_addr
self.kernarg_next_addr = round_up(self.kernarg_next_addr + sz, 16)
return result
def _new_kernargs_region(self, sz:int):
if hasattr(self, 'kernarg_start_addr'): self.delayed_free.append(self.kernarg_start_addr)
self.kernarg_start_addr: int = self.allocator._alloc(sz, BufferSpec())
self.kernarg_next_addr = self.kernarg_start_addr
self.kernarg_pool_sz: int = sz
def flush_hdp(self): self.hdp_flush.HDP_MEM_FLUSH_CNTL[0] = 1
def hsa_terminate():
# Need to stop/delete aql queue before hsa shut down, this leads to gpu hangs.
for dev in HSADevice.devices:
Profiler.process(dev)
del dev.hw_queue
# hsa_shut_down cleans up all hsa-related resources.
hsa.hsa_shut_down()
HSADevice.synchronize = lambda: None #type:ignore
HSAProgram.__del__ = lambda _: None #type:ignore
if Profiler.collected_events: Profiler.save("/tmp/profile.json")