openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

77 lines
4.7 KiB

1 month ago
import ctypes
from typing import Any, Optional, cast
import tinygrad.runtime.autogen.cuda as cuda
from tinygrad.helpers import init_c_var, dedup
from tinygrad.device import Buffer, Device
from tinygrad.runtime.ops_cuda import CUDADevice, check, encode_args, cu_time_execution
from tinygrad.ops import Variable
from tinygrad.engine.realize import ExecItem, BufferXfer, CompiledRunner
from tinygrad.engine.jit import MultiGraphRunner, GraphException
class CUDAGraph(MultiGraphRunner):
def __init__(self, jit_cache: list[ExecItem], input_rawbuffers: list[Buffer], var_vals: dict[Variable, int]):
super().__init__(jit_cache, input_rawbuffers, var_vals)
# Check all jit items are compatible.
if not all(isinstance(ji.prg, (CompiledRunner, BufferXfer)) for ji in jit_cache): raise GraphException
self.jc_idx_with_updatable_rawbufs = dedup([x[0] for x in self.input_replace.keys()])
self.updatable_nodes: dict[int, tuple[Any, Any, Any, bool]] = {} # dict[jc index] = tuple(graph node, node params, input kernel params, is memcpy)
self.graph = init_c_var(cuda.CUgraph(), lambda x: check(cuda.cuGraphCreate(ctypes.byref(x), 0)))
for j,ji in enumerate(jit_cache):
if isinstance(ji.prg, CompiledRunner):
global_size, local_size = ji.prg.p.launch_dims(var_vals)
new_node = cuda.CUgraphNode()
deps = self._access_resources([x.base for x in ji.bufs if x is not None], ji.prg.p.outs, new_dependency=new_node)
c_deps = (cuda.CUgraphNode*len(deps))(*deps) if deps else None
c_args, vargs = encode_args([cast(Buffer, x)._buf for x in ji.bufs], [var_vals[x] for x in ji.prg.p.vars])
kern_params = cuda.CUDA_KERNEL_NODE_PARAMS(ji.prg._prg.prg, *global_size, *local_size, 0, None, vargs)
check(cuda.cuGraphAddKernelNode(ctypes.byref(new_node), self.graph, c_deps, len(deps), ctypes.byref(kern_params)))
if j in self.launch_dims_replace or j in self.var_vals_replace or j in self.jc_idx_with_updatable_rawbufs:
self.updatable_nodes[j] = (new_node, kern_params, c_args, False)
elif isinstance(ji.prg, BufferXfer):
dest, src = [cast(Buffer, x) for x in ji.bufs[0:2]]
src_dev = cast(CUDADevice, Device[src.device])
node_from = cuda.CUgraphNode()
deps = self._access_resources(rawbufs=[dest.base, src.base], write=[0], new_dependency=node_from)
c_deps = (cuda.CUgraphNode*len(deps))(*deps) if deps else None
cp_params = cuda.CUDA_MEMCPY3D_v2(srcMemoryType=cuda.CU_MEMORYTYPE_DEVICE, srcDevice=src._buf, srcPitch=src.nbytes, srcHeight=1,
dstMemoryType=cuda.CU_MEMORYTYPE_DEVICE, dstDevice=dest._buf, dstPitch=dest.nbytes, dstHeight=1,
WidthInBytes=dest.nbytes, Height=1, Depth=1)
check(cuda.cuGraphAddMemcpyNode(ctypes.byref(node_from), self.graph, c_deps, len(deps), ctypes.byref(cp_params), src_dev.context))
if j in self.jc_idx_with_updatable_rawbufs: self.updatable_nodes[j] = (node_from, cp_params, src_dev.context, True)
self.instance = init_c_var(cuda.CUgraphExec(), lambda x: check(cuda.cuGraphInstantiate_v2(ctypes.byref(x), self.graph, None, None, 0)))
def __call__(self, input_rawbuffers: list[Buffer], var_vals: dict[Variable, int], wait=False) -> Optional[float]:
# Update rawbuffers in the c_args struct.
for (j,i),input_idx in self.input_replace.items():
if not self.updatable_nodes[j][3]: setattr(self.updatable_nodes[j][2], f'f{i}', input_rawbuffers[input_idx]._buf)
else:
if i == 0: self.updatable_nodes[j][1].destDevice = input_rawbuffers[input_idx]._buf
elif i == 1: self.updatable_nodes[j][1].srcDevice = input_rawbuffers[input_idx]._buf
# Update var_vals in the c_args struct.
for j, i, v in self.updated_vars(var_vals): setattr(self.updatable_nodes[j][2], f'v{i}', v)
# Update launch dims in the kern_params struct.
for j, global_dims, local_dims in self.updated_launch_dims(var_vals):
node = self.updatable_nodes[j][1]
node.blockDimX, node.blockDimY, node.blockDimZ, node.gridDimX, node.gridDimY, node.gridDimZ = *local_dims, *global_dims # type: ignore[misc]
# Update graph nodes with the updated structs.
for node, c_node_params, c_args, is_copy in self.updatable_nodes.values():
if not is_copy: check(cuda.cuGraphExecKernelNodeSetParams(self.instance, node, ctypes.byref(c_node_params)))
else: check(cuda.cuGraphExecMemcpyNodeSetParams(self.instance, node, ctypes.byref(c_node_params), c_args))
return cu_time_execution(lambda: check(cuda.cuGraphLaunch(self.instance, None)), enable=wait)
def __del__(self):
if hasattr(self, 'graph'): check(cuda.cuGraphDestroy(self.graph))
if hasattr(self, 'instance'): check(cuda.cuGraphExecDestroy(self.instance))